

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

[AFS] Advanced Feature Set

- 32-bit Floating Point Filters
- · Multiple Advanced Filters
- Frequency Analysis Tools

Control Modes

- Cyclic Synchronous Position-Velocity-Torque (CSP, CSV, CST)
- Cyclic Synchronous Torque with Commutation Angle (CSTCA)
- Profile Position-Velocity-Torque
- · Interpolated Position, Homing
- · Indexer, Point-to-Point, PVT
- · Camming, Gearing

Command Interface

- EtherCAT® (CoE) CANopen® over Ethernet
- ASCII, Serial Binary, and Discrete I/O
- Stepper or Quad A/B Position Commands
- PWM Velocity-Torque Command
- Master Encoder (Gearing, Camming)
- ±10 V Position-Velocity-Torque

Communications

- EtherCAT®
- RS-232

Feedback

- Primary Absolute **BiSS-C Unidirectional** SSI Absolute Differential Quad A/B/X
- Secondary Incremental Differential Ouad A/B/X
- Dual Feedback
- Digital Halls

I/O

- 1 Analog Input ±10V, 12-bit
- 5 High-speed Digital Inputs
- 1 Motor Overtemp Input
- 4 High-speed Digital Outputs (including Brake)


Safe Torque Off

• SIL 3, Category 3, PL e

Dimensions, Weight

- NES-HP:1.3 x 2.6 x 2.5 in [31.7 x 66 x 63.5 mm], 5.8 oz [164 g]
- NES-HP-Z:1.44 x 2.6 x 2.5 in [36.5 x 66 x 63.5 mm], 7.5 oz [212 g]

NES-HP

Model	Ic	Ιp	VDC
NES-090-80-C	80	80	9~90
NES-090-140-C	140	140	9~90

NES-HP-Z (Soldered to EZ Board)

Model	Ic	Ιp	VDC
NES-090-80-C-Z	80	80	9~90
NES-090-140-C-Z	140	140	9~90

DESCRIPTION

Copley's NES-HP is the High Power Series of the Nano Standard servo drive product line. Due to its size, it can be mounted directly on the motor or within robotic joints. In addition, Nano Standard High Power complies with the requirements of the robotics, AGV, industrial machinery, medical/life-sciences and aerospace industries.

The NES-HP module may be implemented in a customer application using only connectors, or it can be used when the power pins may be soldered for high load current applications.

The NES-HP-Z is a small form factor available for immediate integration into a customer application. It is used with the industry standard connectors and a heat plate mounted to the frame.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 1 of 30

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

	ICATIONS	

Test conditions: Load = Wye connected load: 1 mH+ 1Ω line-line. Ambient temperature = 25 °C. +HV = HVmax.

MODEL	NES-090-80-C	NES-090-140-C	UNITC
	NES-090-80-C-Z	NES-090-140-C-Z	UNITS
OUTPUT POWER			
Peak Current*	80 (56.6)	140 (99.0)	ADC (Arms, sinusoidal)
Peak Time	NA	NA	Sec
Continuous Current*	80 (56.6)	140 (99.0)	ADC (Arms, sinusoidal)
Peak Output Power	4.7	8.3	kW
Continuous Output Power	4.7	8.3	kW
*Note: For EZ packages, all Nano H	IP modules are soldered	d into the EZ board.	
INPUT POWER			
HV min to HVmax	+9 to +90	+9 to +90	Vdc, transformer-isolated
Ipeak	50	88	ADC
Icont	50	88	ADC continuous
VLogic	+9 to +60	+9 to +60	Vdc, transformer-isolated
VLogic Power	3 with no encoder,	6 W with encoder +5V @ 500 m	nA, VLogic @ 24 Vdc.
PWM OUTPUTS			
Type	MOSFET 3-phase in	verter, 16 kHz center-weighted	PWM carrier, space-vector modulation
PWM Ripple Frequency	32 kHz		
BANDWIDTH			
Current Loop, Small Signal	2.5 kHz typical, ban	dwidth will vary with tuning & I	oad inductance.
HV Compensation		ot affect bandwidth.	
Current Loop Update Rate	16 kHz (62.5 µs)		
Current Sense Resolution	12 Bits		
Position & Velocity Loop Update Rat	e 4 kHz (250 μs)		
COMMAND INPUTS			
EtherCAT	FtherCAT® (CoF) CA	Nopen [®] over Ethernet	
Edicion		Position/Velocity/Torque	
	, ,	city/Torque, Interpolated Position	on (PVT). Homing
		Torque with Commutation Angl	
Signals	, ,	TX1-, RX2+, RX2-, TX2+, TX2-	,
Stand-Alone Mode			
Digital Position Reference	Pulse/Direction, CW	/CCW Stepper Commands (2	MHz maximum rate)
	Quad A/B Encoder	2 M line/sec, 8 Mcount	:/sec (after quadrature)
Digital Torque & Velocity Reference	PWM, Polarity	PWM = 0% - 100%, Power 100%	olarity = 1/0
	PWM 50%	$PWM = 50\% \pm 50\%$, n	o polarity signal required.
	PWM Frequency Rar		KHz maximum
	PWM minimum puls		
Indexing		can be launched from inputs o	
Camming	•	s can be stored in flash memory	/.
ASCII	RS-232, 9600~230,	400 Baud, 3-wire	
DIGITAL INPUTS MODULE			
Number	6		
IN1~5	General purpose inp		
			x. input voltage = $+12$ Vdc, 10 k Ω pull-up to $+5$ Vdc,
		e threshold, 0.6 Vdc max. nega	
			nd does not include 10 k Ω pull-ups.
IN6			gger, 33 µS RC filter, max. input voltage = +12 Vdc
	4.99 k\Q pull-up to -	F5 Vdc, 2.2 Vdc min. positive th	reshold, 0.6 Vdc max. negative threshold
DIGITAL INPUTS NES-HP-Z			
IN1~3	24 V tolorant HC C	MOS 5 0V Schmitt trigger 330	µs RC filter, 0~24 Vdc compatible, 10 kΩ pull-up to +5Vdc
1117~5		e threshold, +0.6 Vdc max. ne	
IN4~5	·		x. input voltage = $+12$ Vdc, $10 \text{ k}\Omega$ pull-up to $+5$ Vdc,
1147-5		e threshold, 0.6 Vdc max. nega	
IN6			igger, 330 μ S RC filter, max. input voltage = +12 Vdc
2.10			reshold, 0.6 Vdc max. negative threshold
DIGITAL OUTPUTS MODULE	2.0 .02 pan ap to 1		
Number Number	4		
Number OUT1~4		Schmitt trigger, functions prog	rammable ±5 Vcc
0011,44		H = 4.18 Vdc, Sink 4 mA @ VC	
DICITAL CUITDUTS NEC US 7	Jource -4 IIIA @ VC	11 - 4.10 vac, 311K 4 11A @ VC	7L - 0.20 VUC
DIGITAL OUTPUTS NES-HP-Z	4		
Number	4	Colombia to income Control	war war laber 15 Mars
OUT1~4		Schmitt trigger, functions prog	
OUT4 (NEC LID 7)		OH = 4.18 Vdc, Sink 4 mA @ VC	
OUT4 (NES-HP-Z)	Brake control, progi	ammable release time followed	by programmable PWM duty-cycle for holding current.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 2 of 30

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

ANALOG INPUT

Number

Type Differential, ± 10 Vdc range, 5.0 k Ω input impedance to a 12 bit ADC, single-pole low pass filter with a

14.5 kHz -3dB bandwidth.

Torque, Velocity, or Position command, or functions as a general purpose analog input. Function

SERIAL COMMUNICATION PORT

RxD, TxD, SGND Signals

RxD input is 74LVC14 3.3 V Schmitt trigger with 10 k Ω pull-up to +5V

TxD output is 74HCT14 5 V Schmitt trigger

Full-duplex, DTE serial communication port for drive setup and control, 9,600 to 230,400 bits/second Mode

Protocol ASCII or Binary format

Isolation Non-isolated. Referenced to Signal Ground

SERIAL COMMUNICATION PORT, NES-HP-Z

Serial Communication Port An ADM3101E transceiver provides standard RS-232 signal levels.

NES-HP-Z requires an SER-USB-M or cable terminated to Molex 3 Pin to connect to the Serial port.

Signals RxD, TxD, SGND

ETHERCAT PORT

Format 100BASE-TX

EtherCAT® (CoE) CANopen® over Ethernet Protocol

External magnetics required for module. NES-HP has internal magnetics. Isolation

Max. voltage with respect to grounds: 32 Vdc.

MOTOR CONNECTIONS

Motor U,V,W Drive outputs to 3-phase brushless motor Wye, or Delta connected, and DC brush connections motor use

outputs U & V.

Minimum inductance: 200 µH line-line

Encoder Digital encoders, incremental and absolute (See FEEDBACK below).

Digital U/V/W Halls

Motemp Input is programmable to disable the drive if motor sensor drives input HI or LO.

FEEDBACK

Incremental Encoders

Digital Incremental Encoder Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required).

RS-422 line receivers, 5 MHz maximum line frequency (20 M counts/sec), 74HCT thresholds

Absolute Encoders BiSS-C Unidirectional, SSI MA+, MA- (X, /X), SL+, SL- (A, /A) signals, clock output from drive, data returned

from the encoder.

All encoder data inputs and clock outputs are differential and require external terminators. **Terminators**

Hall signals (U,V,W), 15 k Ω pull-up to +5V, 15 k Ω /100 pF RC to 74LVC3G14 Schmitt trigger at +5 Vcc Commutation

HALLS

Single-ended, 120° electrical phase difference U, V, W

Schmitt trigger, 1.0 µs RC filter from active HI/LO sources, 5 Vdc compatible

15 k Ω pull-up to +5 Vdc, 74LVC, 3.3 V thresholds

+5V OUTPUT

Number 1

Rating 150 mA maximum. Protected for overload or shorts.

Available for optional peripherals immediately adjacent to the module.

Note: +5 VDC is used for onboard STO Power (when it is not using external +24 VDC).

+3.3V OUTPUT

Number

150 mA maximum. Protected for overload or shorts. Rating

Available for optional microcontroller, RS-232 Transceiver, EtherCAT Magentics, LEDs, and Address Switches.

Note: +3.3 is not connected to external connectors.

+5VENC OUTPUT

Number

250 mA nominal, 500 mA maximum. Protected for overload and shorts. Rating

Note: The maximum total current for both outputs combined is 500 mA.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 3 of 30

FUNCTIONAL

ISO 13849-1

Up to SIL 3

IEC 61800-5-2

Up to PL e (Cat.3)

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

SAFE TORQUE OFF (STO)

Function PWM outputs are inactive and the current to the motor will not be possible when the STO function is active.

NES-HP-Z: Connecting both STO inputs to +5V or +24V will deactivate the STO function.

Safety Integrity Level SIL 3, Category 3, Performance Level e (PL e)

Inputs 2 two-terminal: STO_1, STO1_RTN, STO_2, STO2_RTN

Opto-isolators, 5V compatible Type

Disabling NES-HP: Connecting both STO inputs to +5V will deactivate the STO function.

PROTECTIONS

HV Overvoltage $+HV > +95 \pm 1 Vdc$ Drive outputs turn OFF until +HV is $< +95 \pm 1$ Vdc. HV Undervoltage $+HV < +9.0 \pm 0.5 Vdc$ Drive outputs turn OFF until $+HV > +9.0 \text{ Vdc} \pm 0.5 \text{ Vdc}$.

Drive Over-Temperature PC Board > 90 °C +3/-0 °C Programmable as latching or temporary fault

Short Circuits Output to output, output to ground, internal PWM bridge faults

I²T Current Limiting Programmable: continuous current, peak current, peak time for drive and motor

Latching / Non-Latching Programmable response to errors.

MECHANICAL & ENVIRONMENTAL

Size, Weight NES-HP:1.3 x 2.6 x 2.5 in [31.7 x 66 x 63.5 mm], 5.8 oz [164 g] NES-HP-Z:1.44 \times 2.6 \times 2.5 in [36.5 \times 66 \times 63.5 mm], 7.5 oz [212 g]

Ambient Temperature Operating: 0 to +45 °C, [0 to 113 °F], Storage: -40 to +85 °C, C [-40 to 185 °F]

Humidity 0 to 95%, non-condensing Altitude ≤ 2000 m (6,562 ft) 2 g peak, 10~500 Hz (Sine) Vibration Shock 10 g, 10 ms, half-Sine pulse

Contaminants Pollution Degree 2

AGENCY STANDARDS CONFORMANCE

Standards and Directives

Functional Safety

IEC 61508-1, IEC 61508-2, IEC 61508-3, (SIL 3)

Directive 2006/42/EC (Machinery) ISO 13849-1 (Cat 3, PL e)

IEC 61800-5-1, IEC 61800-5-2 (SIL 3)

Product Safety

Directive 2014/35/EU (Low Voltage) IEC 61800-5-1, EN 61800-5-1

EMC

Directive 2014/30/EU (EMC) IEC 61800-3, EN 61800-3

IEC 61800-5-2

Restriction of the Use of Certain Hazardous Substances (RoHS)

Directive 2011/65/EU and its amendments 2015/863/EU, EN 63000:2018

Approvals

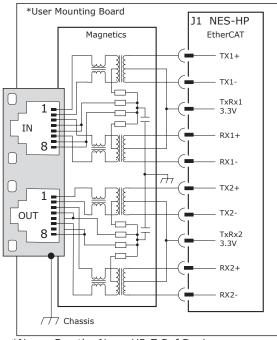
UL Recognized Component to: UL 61800-5-1, UL 61800-5-2 IEC 61800-5-1, IEC 61800-5-2

Refer to the Copley Nano High Power User Guide, Part Number 16-140432.

The information provided in the Copley, Nano High Power User Guide, Part Number 16-140432, must be considered for any application using the Nano drive STO feature.

Failure to heed this warning can cause equipment damage, injury, or death.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 4 of 30



ETHERCAT COMMUNICATIONS

EtherCAT is the open, real-time Ethernet network developed by Beckhoff based on the widely used 100BASE-TX cabling system. EtherCAT enables high-speed control of multiple axes while maintaining tight synchronization of clocks in the nodes.

Data protocol is CANopen application protocol over EtherCAT (CoE) based on CiA 402 used for motion control devices. For more information on EtherCAT, refer to the website: http://ethercat.org.

NETWORK RJ-45

IN Name	Pin	OUT Name	
Ecat TX1+	1	Ecat TX2+	
Ecat TX1-	2	Ecat TX2-	
Ecat RX1+	3	Ecat RX2+	
D/C 4	D/C		
R/C	5	R/C	
Ecat RX1-	6	Ecat RX2-	
D/C	7	D/C	
R/C	8	R/C	

Note: The term, R/C, refers to the 75 Ω and 1000 pF components shown.

DRIVE J1

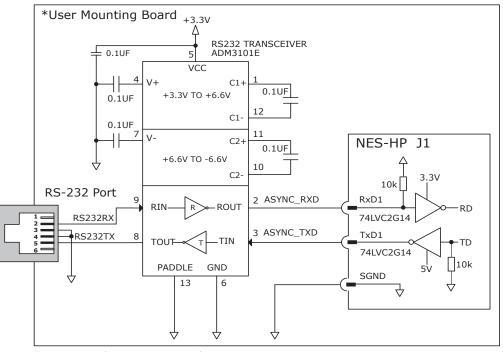
Signal	Pin
[TX1+] TXPA	24
[TX1-] TXNA	26
+3.3V_TXRX1	19
[RX1+] RXPA	20
[RX1-] RXNA	22
[Tx2+] TXPB	25
[Tx2-] TXNB	23
+3.3V_TXRX2	21
[Rx2+] RXPB	29
[Rx2-] RXNB	27

*Note: See the Nano-HP-Z Ref Design.

RS-232 COMMUNICATIONS

The serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 230,400 Baud. Use the Copley software to program the setup for the drive configuration or to setup the external equipment to send the ASCII commands.

In the following diagram, the circuit shown is used on the -Z boards. It is recommended for user's PC boards. It converts the single-ended TTL signals levels in the NES-HP into the ANSI RS-232 levels which are the standard for the serial communications and computer COMM ports.


Tel: 781-828-8090

DRIVE J1

Signal	Pins
RxD1	30
TxD1	32
SGND	34

RS-232 PORT

Signal	Pins
RS232RX	2
RS232TX	5
SGND	3.4

*Note: See the Nano-HP-Z Ref Design.

SAFE TORQUE OFF (STO)

The Safe Torque Off (STO) function is defined in IEC 61800-5-2. Two channels are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from producing torque in the motor.

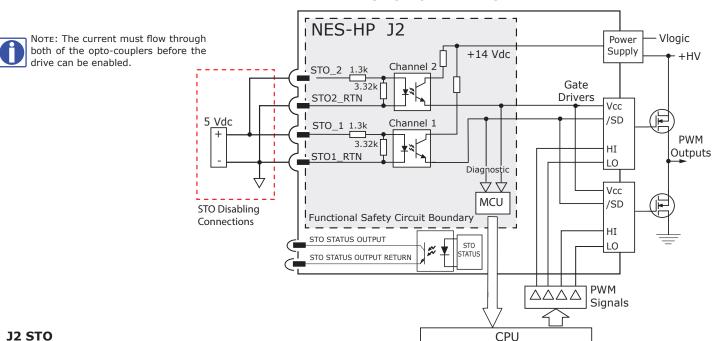
This provides a positive OFF capability that cannot be overridden by the control firmware or the associated hardware components. When the opto-couplers are energized (current is flowing in the input diodes), the control core will be able to control the On/OFF state of the PWM outputs to produce torque in the motor.

INSTALLATION

Refer to the Copley Nano High Power User Guide, Part Number 16-140432.

The information provided in the Copley, Nano High Power User Guide, Part Number 16-140432, must be considered for any application using the drive's STO feature.

FAILURE TO HEED THIS WARNING CAN CAUSE EQUIPMENT DAMAGE, INJURY, OR DEATH.


STO DISABLE

In order for the PWM outputs of the NES-HP to be activated, the current must be flowing through the opto-couplers that are connected to the STO_1 and STO_2 terminals and the drive must be in an ENABLED state. When either of the opto-couplers are Off, the drive is in a Safe Torque OFF (STO) state and the PWM outputs cannot be activated by the control core to drive a motor.

In the diagram, it shows the connections that will energize both opto-couplers from a +5V source. When this is done, the STO feature is disabled and control of the output PWM stage is under control of the digital control core. If the STO feature is not used, these connections must be made in order for the drive to be enabled.

STO DISABLE CONNECTIONS

FUNCTIONAL DIAGRAM

Name	Pin		Name
STO_1	1	2	STO1_RTN
STO_2	3	4	STO2_RTN
STO_STATUS_OUTPUT	5	6	STO_STATUS_OUTPUT_RTN

STO OPERATION

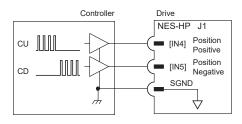
STO Input Voltage	STO State	
STO_1 AND STO_2 ≥ 3.0 Vdc	STO Inactive. Drive can be enabled to produce torque.	
STO_1 OR STO_2 ≤ 0.8 Vdc	STO Active. Drive cannot be enabled to produce torque.	
STO_1 OR STO_2 Open	- 510 Active. Drive cannot be enabled to produce torque.	

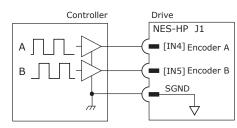
Note: Voltages are referenced between STO_x and STOx_RTN in J2. For example, $V(STO1) = V(STO_1) - V(STO1_RTN)$

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 6 of 30

DIGITAL COMMAND INPUTS: POSITION


STAND-ALONE MODE DIGITAL POSITION-CONTROL INPUTS


The NES-HP drive works with the motion controllers that send output pulses to command Position. The following formats are supported:


- Step/Direction
 - In Step/Direction mode, a pulse-train controls motor Position, and the direction is controlled by a DC level at the Direction input.
- Count-Up/Count-Down (CU/CD)
 - In the CU/CD (Count-Up/Count-Down) mode, the signals command the motor to move CW or CCW depending on to which input the pulse-train is directed. To operate the motor in an electronic gearing mode, connect the inputs to a quadrature encoder or connect to another motor. In all cases, the ratio between input pulses and motor revolutions is programmable.
- A/B Quadrature Encoder
- In the A/B Quadrature Encoder mode, there are two signals that emulate the encoder outputs control position: direction and velocity.

COUNT-UP/COUNT-DOWN INPUTS

STEP/DIRECTION INPUTS

QUAD A/B ENCODER INPUTS

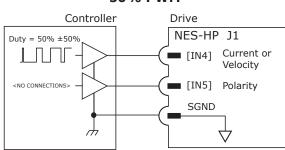
Command Options	Signal	J1 Pins
Step, Count Up, Encoder A	IN4	8
Direction, Count Down, Encoder B	IN5	9

J1 SGND Pins
4,11,12,17,18,28,31,33,34,49,50

DIGITAL COMMAND INPUTS: VELOCITY, TORQUE

STAND-ALONE MODE DIGITAL VELOCITY-TORQUE INPUTS

The NES-HP drive works with motion controllers that output pulses to command velocity and torque (current). The following formats are supported:


- Pulse/Direction
 - In Pulse/Direction mode, a pulse-train with variable duty cycle on IN4 controls Velocity or Torque from 0~100%. IN5 HI or LO controls the direction of the Velocity or polarity of the Torque.
- In 50% PWM mode, a single signal of 50% duty cycle on IN4 commands 0% Velocity/Torque.
- -Increasing the duty cycle to 100% commands positive Velocity/Torque.
- -Decreasing the duty cycle to 0% commands negative Velocity/Torque.

PWM & DIRECTION

Command Options	Signal	J1 Pins
PWM Vel/Trq, PWM Vel/Trq & Direction	IN4	8
PWM/Dir Polarity, (none)	IN5	9

50% PWM

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-138164 Rev 01

Fax: 781-828-6547

Page 7 of 30

HIGH SPEED INPUTS: IN1, IN2, IN3, IN4, IN5

The five digital inputs to the NES-HP are programmable to a selection of functions.

All have 100 ns RC filters when driven by active sources (CMOS, TTL, etc.) and all have 10 k Ω pull-up resistors to +5 Vdc.

In addition to the selection of functions, the active level for each input is individually programmable.

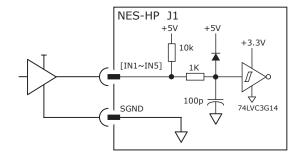
Input level functions have programmable HI or LO to activate the function.

Input transition functions are programmable to activate on LO -> HI, or HI -> LO transitions.

Input Level Functions Active on HI or LO Level

- Drive Enable, Enable with Clear Faults, Enable with Reset
- PWM Sync
- Positive Limit Switch
- Negative Limit Switch
- · Home Switch
- Encoder Fault
- Motor Temperature Sensor Input
- Motion Abort
- High-Resolution Analog Divide

Input Transition Functions Active on HI-LO or LO-HI Transition


- Clear Faults and Event Latch
- Drive Reset
- PWM Sync Input
- Trajectory Update
- Count Input Edges, Save to Register
- High-Speed Position Capture
- Simulated Absolute Encoder Burst
- Abort Move if > N Counts From Destination in Register

SPECIFICATIONS

Input	Data	Notes
	HI	$V_{T} + = 1.42 \sim 2.38 \text{ Vdc}$
	LO	$V_{T} + = 0.68 \sim 1.6 \text{ Vdc}$
Input Voltages	Hys	$V_{H} = 0.44 \sim 1.26$
	Max	+12 Vdc
	Min	0 Vdc
Pull-Up	R1	10 kΩ
	R2	1 kΩ
Low Pass Filter	C1	100 pF
Low 1 ass 1 liter	RC	IN1~5: 0.1 μs IN6: 33 us

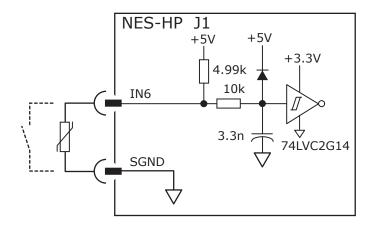
CONNECTIONS

Signal	J1 Pins
IN1	5
IN2	6
IN3	7
IN4	8
IN5	9

J1 SGND Pins
4,11,12,17,18,28,31,33,34,49,50

Consult the Factory for Adapting 24V logic to 5V logic.

5V logic. Do not exceed 12V. Do not connect a 24V logic to this input.


MOTOR OVERTEMP INPUT: IN6

Input IN6 has a 33 microsecond rise time RC filter when driven by active sources (CMOS,TTL, etc.). On modules, it has a 4.99 k Ω pull-up resistor to +5 VDC. Input IN6 is designed to interface with an industry standard PTC thermistor IAW

BS 49990111(1987) used for built-in thermal protection of the motor as a default. If it is not used for the Motemp function, IN6 can be re-programmed for other input functions.

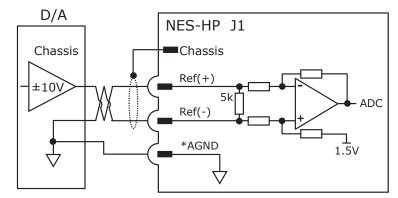
CONNECTIONS

Signal	J1 Pins
IN6	10

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-138164 Rev 01

ANALOG INPUT: AIN1


As a reference input, AIN1 takes Position/Velocity/Torque commands from a controller.

SPECIFICATIONS

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.0 kΩ
Resolution	12	Bits *

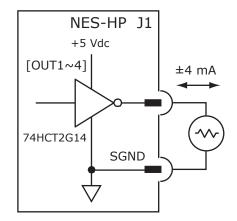
Signal	J1 Pins
Ref(+)	2
Ref(-)	1
AGND	3

If it is not used as a command input, it can be used as a general-purpose analog input.

*Note: Analog ground is common to signal ground.

DIGITAL OUTPUTS: OUT1~OUT4

Digital outputs [OUT1~4] are CMOS inverters. They operate from +5V and can source/sink ±4 mAdc.


In the diagram, the output functions shown are programmable to turn the output On (HI) or Off (LO) when active.

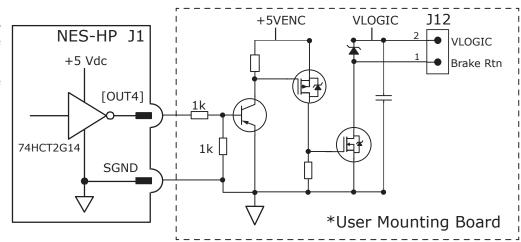
OUTPUT FUNCTIONS

- Fault
- Custom Event
- PWM Sync
- Custom Trajectory Status
- Custom Position-Triggered Output
- Program Control
- Brake Control (see Brake Output: OUT4)

Signal	J1 Pins
OUT1	13
OUT2	14
OUT3	15
OUT4	16

J1 SGND Pins
4,11,12,17,18,28,31,33,34,49,50

BRAKE OUTPUT: OUT4


The default function of OUT4 is used to control a motor holding brake. The default function is applied when using the user PC board that has components to sink the higher current of the brake.

If the default function is not used for the brake control, it can be programmed as a logic output.

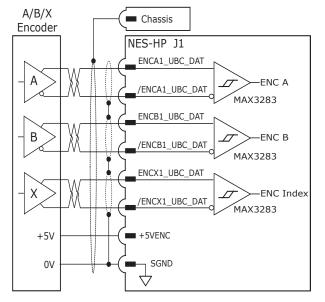
OUTPUT FUNCTION

- · Motor holding brake when NES-HP is mounted to a user PCB with the same circuit.
- Same functions as OUT1~OUT3 if the drive is used without a brake control.

Signal	J1 Pins
OUT4	16

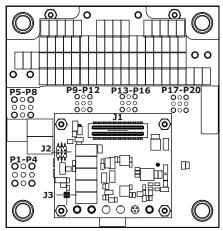
Tel: 781-828-8090

*Note: See the Nano-HP-Z Ref Design.



ENCODER 1 (PRIMARY FEEDBACK)

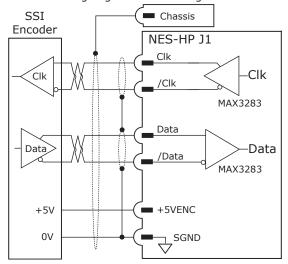
QUAD ENCODER WITH INDEX



A/B/X SIGNALS

J1 Pins
43
44
45
46
47
48
57,59

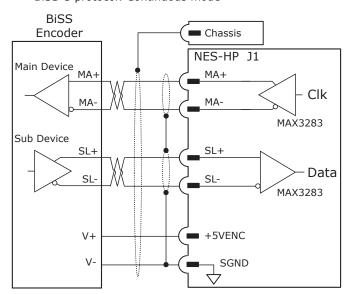
J1 SGND Pins
4,11,12,17,18,28,
31,33,34,49,50



*Note: In the diagrams, chassis is located in the mounting holes on all four corners.

SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or a control system. The NES-HP drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The number of encoder data bits and counts per motor revolution are programmable. The hardware bus consists of two signals: SCLK and SDATA. The SCLK signal is only active during transfers. Data is clocked in on the falling edge of the clock signal.


SSI, BISS SIGNALS

SSI	BiSS	J1 Pins
Clk	MA+	47
/Clk	MA-	48
Data	SL+	43
/Data	SL-	44
+5\	57,59	
SGN	49,50	

BISS-C ABSOLUTE ENCODER

BiSS-C is an - Open Source - digital interface used for sensors and actuators. BiSS-C refers to principles that comply with industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options.

- Serial Synchronous Data Communication
- Cyclic at high speed
- · 2 Unidirectional Lines Clock and Data
 - Line delay compensation for high speed data transfer
 - Request for data generation at slaves
 - Safety capable: CRC, Errors, Warnings
 - Bus capability including actuators
- Bidirectional
 - BiSS C-protocol: Continuous mode

Note: Single (outer) shields should be connected at the drive end. Inner shields should only be connected to Signal Ground on the drive.

ENCODER 2: SECONDARY FEEDBACK

QUAD ENCODER WITH INDEX

Incremental encoders have two outputs A & B that are 90 degrees electrical apart. The outputs produce four HI/LO combinations (counts) of the A and B signals for every line on the encoder disk. Decoding these outputs indicates the direction of rotation as well

as the angular distance moved. But it does not reveal the actual position of the motor shaft. The Index signal is a single output that occurs once per revolution that indicates the absolute angular position of the motor.

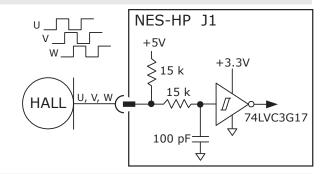
A/B/X Chassis Encoder NES-HP J1 ENCA2 -ENC A /ENCA2 MAX3283 ENCB2 -ENC B /ENCB2 MAX3283 ENCX2 -ENC Index /ENCX2 MAX3283 +5V +5VENC 0V SGND

A/B/X SIGNALS

Signal	J1 Pins
ENCA2	51
/ENCA2	52
ENCB2	53
/ENCB2	54
ENCX2	55
/ENCX2	56
+5VENC	57,59
SGND	49,50

J1 SGND Pins
4,11,12,17,18,28,
31,33,34,49,50

Note: The Secondary Encoder supports only A/B/X Incremental Encoders.


OTHER MOTOR CONNECTIONS

HALLS

Hall sensors in a brushless motor are driven from the magnetic field in the motor and provide commutation feedback without an encoder. When the sensors are used with incremental encoders, they enable the motor to operate without a phase-finding cycle.

HALL SIGNALS

Signal	J1 Pins
HALLU	39
HALLV	40
HALLW	41

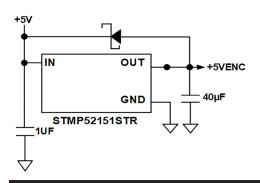
DC OUTPUT VOLTAGES

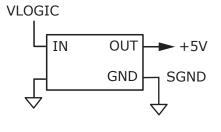
+5VENC

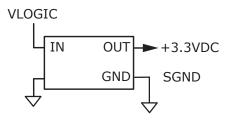
This voltage is used for encoders and it has an internal fault protection. The maximum current output is 500 mA shared between encoders. Current limiting occurs at 600 mA minimum, 1.0 A maximum.

+5V

voltage is used for optional peripherals that are immediately adjacent to the module and it has an internal fault protection. The maximum current output is 150 mA. In addition, the +5 VDC is used for on board STO Power (when it is not used for external +24 VDC). The maximum current output is 150 mA.


+3.3 VDC


This voltage is used for the following connections that are immediately adjacent to the module:


- Microcontroller
- RS-232 Transceiver
- · CAN Transceiver
- · LEDs and Address Switches
- 150 mA maximum

Tel: 781-828-8090

· Protected for overload or shorts Note: +3.3 VDC is not connected to external connections.

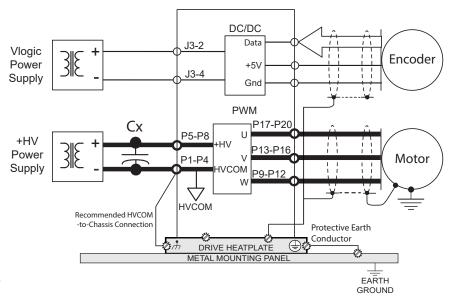
Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-138164 Rev 01

Fax: 781-828-6547 Page 11 of 30

+HV CONNECTIONS

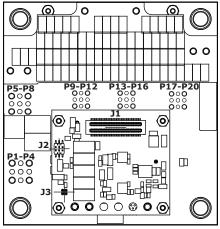
POWER SUPPLIES

The drive main power, +HV, is typically supplied by unregulated DC power supplies. These power supplies must be isolated from the mains, and all circuits should be grounded from earth wired to HVCOM at the drive. The +HV supply connects to Supply P5 and P8.


To comply with the wiring practices, the +HV wires should be twisted together for noise suppression, and the power supply should not be grounded. By following the wiring guidelines, it ensures that the higher currents flowing in these conductors will not flow through any circuit grounds where they might induce noise.

During deceleration, the mechanical energy in the motor and load is converted back into electrical energy that must be dissipated as the motor comes to a stop. While some of this is converted to heat in the motor windings, the rest of it will flow through the drive into the power supply. Copley provides the local bulk capacitance Cx of $220~\mu F$ 100V to prevent excessive ringing when FETS are switched.

Use an external storage capacitor if the load has appreciable inertia. This should be sized, so that adding the undissipated energy from the motor will not raise the voltage beyond the point at which the drive shuts down. When this is not possible, an external 'dumper', or regenerative energy dissipater must be used which acts as a shunt regulator across the +HV and Gnd terminals.


GROUNDING

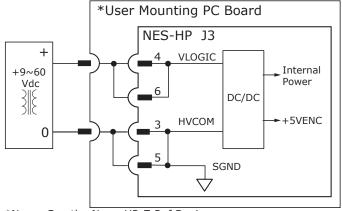
The P1 to P4 connections to HVCOM keep the +HV power source stable at the drive while the voltage at the power supply (-) varies due to the cable resistance and the +HV current. Grounding at the PE point provides a PE (Protective Earth) connection as well as a point to ground the motor cable shields.

P1~P20

Signal	Pins
HVCOM	P1∼P4
+HV	P5~P8
MOTW	P9∼P12
MOTV	P13~P16
MOTU	P17~P20

VLOGIC CONNECTIONS

DESCRIPTION


VLogic is required for the operation of the drive. It powers the internal logic and control circuits. Encoder +5V is derived from VLogic. When the STO feature is used, VLogic must be produced by power supplies with a transformer isolation from the mains and

J3 VLOGIC

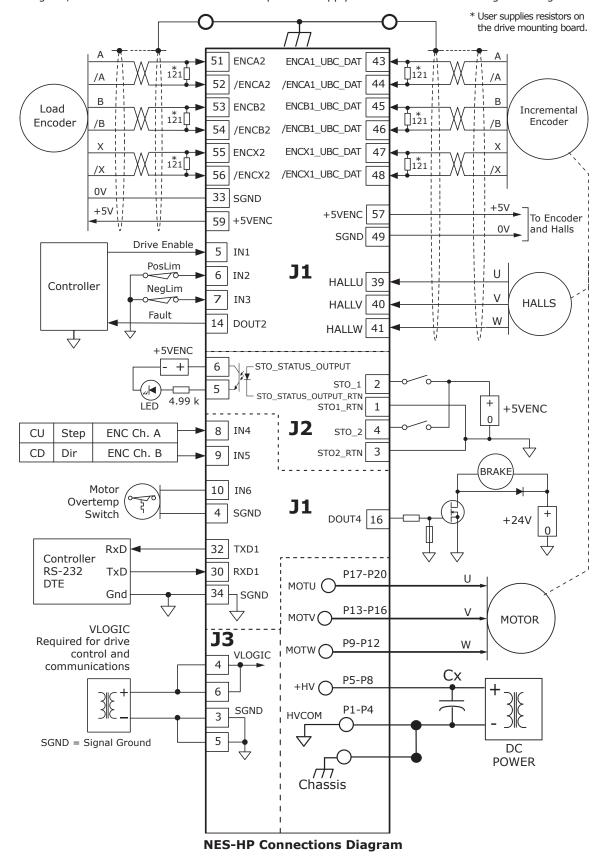
Name	P	in	Name
N.C.	2	1	N.C.
VLOGIC	4	3	HVCOM
VLOGIC	6	5	HVCOM
N.C.	8	7	N.C.

PELV or SELV ratings, and a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLogic can be driven from a single power supply.

*Note: See the Nano-HP-Z Ref Design.

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLogic +9~60. 24V power is recommended. If a 24V Brake is used, 24V is required. If common to HV, do not exceed 60V. Use REGEN protection, and diode isolation from HV.


Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 12 of 30

NES-HP TYPICAL CONNECTIONS

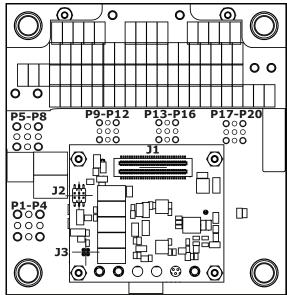
The following diagram shows the NES-HP connections.

Note: In the diagram, the asterisk indicates the user is required to supply the resistors on the driving mounting PC board.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-138164 Rev 01

Fax: 781-828-6547 Page 13 of 30

Tel: 781-828-8090


NES-HP MODULE CONNECTIONS

The following diagrams and tables show the pins and signals located on the topside of the NES-HP module.

P1~P20

Signal	Pins
HVCOM	P1∼P4
+HV	P5~P8
MOTW	P9~P12
MOTV	P13~P16
MOTU	P17~P20
Chassis	*

*Note: The mounting holes are connected to one another and to Chassis Ground. The mounting hole marked with the PE symbol is the connection point for the protective earth conductor.

NES-HP Module Connector Diagram

J3 VLOGIC

Name	P	in	Name
N.C.	2	1	N.C.
VLOGIC	4	3	HVCOM
VLOGIC	6	5	пусом
N.C.	8	7	N.C.

J2 STO CONNECTIONS

Name	Pin		Name	
STO1_RTN	1	2	STO_1	
STO2_RTN	3	4	STO_2	
STO_STATUS_OUTPUT_RTN	5	6	STO_STATUS_OUTPUT	
Note: The STO Connector J6 is mounted on the bottom side of the PCB.				

l	Signal	Pin		Signal				
l	REFIN1-	1	2	REFIN1+				
l	AGND	3	4	SGND				
l	[ENABLE] IN1 5		6	IN2				
	IN3	7	8	IN4				
l	IN5	9	10	IN6				
	SGND	11	12	SGND				
ı	DOUT1	13	14	DOUT2				
l	DOUT3	15	16	DOUT4 [BRAKE]				
	SGND	17	18	SGND				
	+3.3V_TXRX1	19	20	[RX1+] RXPA				
	+3.3V_TXRX2	21	22	[RX1-] RXNA				
	[Tx2-] TXNB	23	24	[TX1+] TXPA				
	[Tx2+] TXPB	25	26	[TX1-] TXNA				
	[Rx2-] RXNB	27	28	SGND				
ļ	[Rx2+] RXPB	PB 29		ASYNC_RXD1				
	SGND 31		32	ASYNC_TXD1				
	SGND	33	34	SGND				
	ASYNC_RXD2	35	36	N.C.				
	ASYNC_TXD2	37	38	N.C.				
	HALLU	39	40	HALLV				
	HALLW	41	42	+3.3V				
	ENCA1_UBC_DAT	43	44	/ENCA1_UBC_DAT				
	ENCB1	45	46	/ENCB1				
	ENCX1_UBC_CLK	47	48	/ENCX1_UBC_CLK				
	SGND	49	50	SGND				
	ENCA2	51	52	/ENCA2				
	ENCB2	53	54	/ENCB2				
	ENCX2	55	56	/ENCX2				
	+5VENC	57	58	+5V				
	+5VENC	59	60	+3.3V				
	Note: In the table, the term, N.C., refers to No							

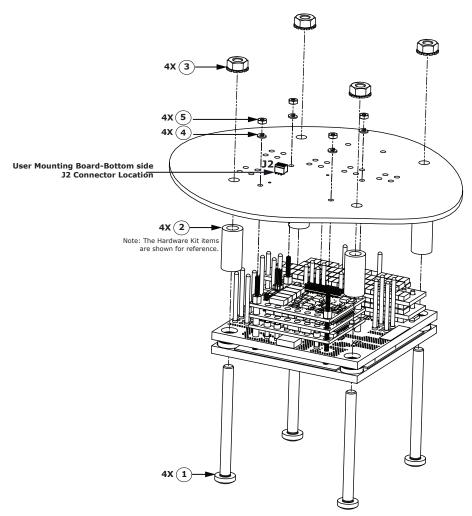
In the table, the term, N.C., refers to No Connection.

Ref Des	Label	Mfgr	Part Number *	Description	Qty
J1	Signal	WCON	3620-S060-022G3R02	Header, 60 pos, 0.5 mm pitch	1
J2	STO	Samtec	CLM-103-02-L-D-BE	Header, 6 pos, 1 mm pitch	1
J3	VLOGIC	WCON	2521-204MG3CUNR1	Header, 8 pos, 1 mm pitch	1

*Note: The Part Number column indicates the parts that require the purchase of reels for these components. Refer to the following vendor to contact for approved value-added partner Action Electronics.

Action Electronics, Inc., Walpole, MA 02081-2522-US, Phone: (508) 668-5621

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 14 of 30



NES-HP USER MOUNTING BOARD ASSEMBLY

The following diagram shows the NES-HP Module component assembly that includes the custom plug-in module.

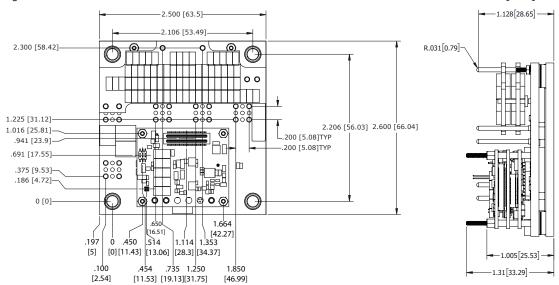
The Nano-HP module hardware kit components are included with this assembly.

NES-HP Module Components Assembly Diagram

N-HP-MK: Nano-HP Module Hardware Kit

14 1	The Pik: Nano he Piodale hardware kit							
#	Item	Qty	Mfgr	Part Number	Description			
1	Screw	4	Bossard International	1211609	M4 Screw, 40mm long, Phillips Pan Head			
2	Spacer	4	Unicorp	MS1432-M04-F16-F	M4 Spacer, 16.5mm long, Aluminum			
3	Nut	4	Arnold Industries	BN1364M4NK	M4 KEP nut			
4	Washer	4	Fastenal	0171926	#0 Split Lock washer			
5	Nut	4	Fastenal	0173909	0-80 Hex Nut			

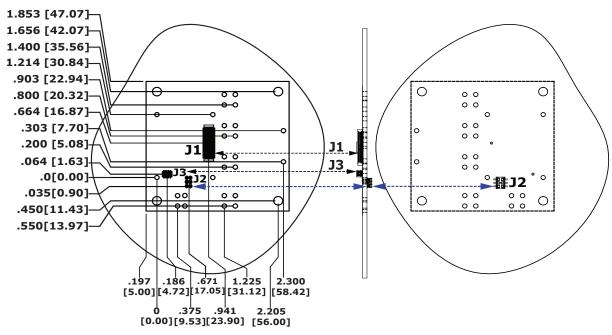
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 15 of 30



NES-HP DIMENSIONS

The following diagram shows the NES-HP dimensions.

The dimensions are measured in inches [mm].



NES-HP Dimensions Diagram

NES-HP USER MOUNTING BOARD DIMENSIONS

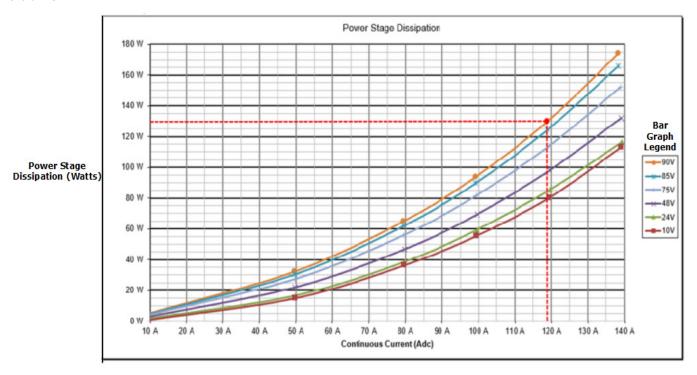
The following diagram shows the topside and bottom side view of the user mounting PC board for the drive. The STO (J2) connector is mounted on the topside of the PC board.

The bottom view shows the clearance holes for the STO connector mating pins.

User Mounting Board Dimensions Diagram

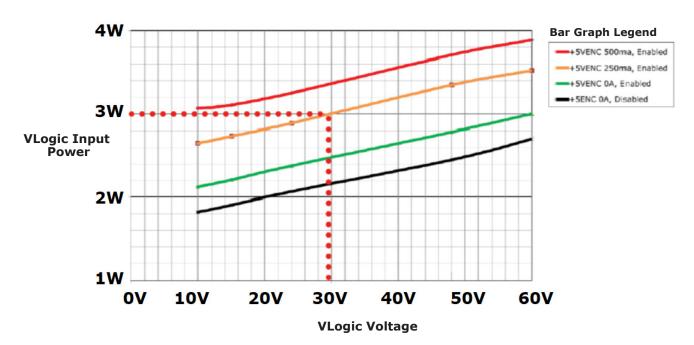
- 1. The J2 connector is on the bottom side of the PCB. The center line dimension shown on the topside is used for the J2 connector body with the 6 access holes used for the header pins. The header pins pass through the customer board and then mate to the connector.
- 2. To determine the copper width and thickness for P1~P20 signals, refer to specification IPC-2221. (Association Connecting Electronic Industries, https://www.ipc.org)
- 3. For maximum noise suppression and immunity, connect the standoffs to etches on the PC board that connects to the chassis.
- 4. The Nano High Power Module drives do not emit noise above 70 dB(A) when they are mounted and operating.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 16 of 30



THERMALS: PWM OUTPUTS DISSIPATION

The following chart shows the power dissipation in the drive when the PWM outputs are driving a motor. Adding the PWM dissipation to the VLogic dissipation will yield the total dissipation in Watts for the drive.


In the chart, the dotted lines show a power dissipation of 130 W at a continuous current of 119 Adc and +HV = 90 Vdc.

VLOGIC/Voltage

In the chart below, it shows the power dissipation in the Vlogic circuits that power the drive's control circuits and the external encoders. Adding the PWM dissipation to the Vlogic dissipation will yield the total dissipation in Watts for the drive.

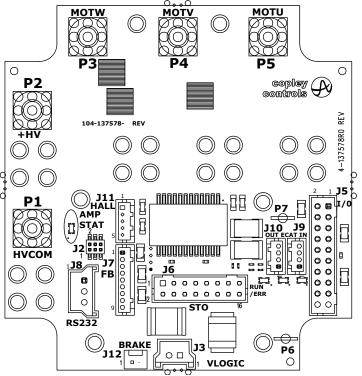
As an example, the dotted lines show a dissipation of 3.0 W at Vlogic = 30 Vdc, when the drive is in an Enabled state and outputting 250 mA for an encoder.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 17 of 30

NES-HP-Z BOARD

The NES-HP-Z Signals and Pins diagram and tables identify the jumpers, signals and pins on the NES-HP-Z board.

MODELS


NES-090-80-C-Z NES-090-140-C-Z

P1-P5

Signal	Ref Des
HVCOM	P1
+HV	P2
MOTW	Р3
MOTV	P4
MOTU	P5

J11 HALLS

Signal	Pin
HALLU	5
HALLV	4
HALLW	3
+5VENC	2
SGND	1

NES-HP-Z Signals and Pins Diagram

J5 I/O

Signal	Pin		Signal
/ENCA2	2	1	REFIN1-
ENCA2	4	3	REFIN1+
IN1_24VTOL	6	5	/ENCX2
IN2_24VTOL	8	7	ENCX2
IN3_24V_TOL	10	9	+5VENC
DOUT1	12	11	SGND
DOUT2	14	13	/ENCB2
DOUT3	16	15	ENCB2
IN4	18	17	SGND
IN5	20	19	Chassis

P7 SHIELD P6 SHIELD

Signal	Pin	Signal	Pin
SHLD	1	SHLD	1

J10 ECAT OUT J9 ECAT IN

OUT	Pin
RX2+	1
RX2-	2
TX2+	3
TX2-	4

IN	Pin
RX1+	1
RX1-	2
TX1+	3
TX1-	4

J7 FEEDBACK

Signal	Pin
OVERTEMP_IN	9
ENCX1_UBC_CLK	8
/ENCX1_UBC_CLK	7
ENCB1	6
/ENCB1	5
ENCA1_UBC_DAT	4
/ENCA1_UBC_DAT	3
+5VENC	2
SGND	1

J8 RS-232

Signal	Pin		
RX232TX1	3		
RS232RX1	2		
SGND	1		

J12 BRAKE

Signal	Pin		
VLOGIC	2		
BRAKE	1		

J3 VLOGIC

Signal	Pin
HVCOM	1
VLOGIC	2

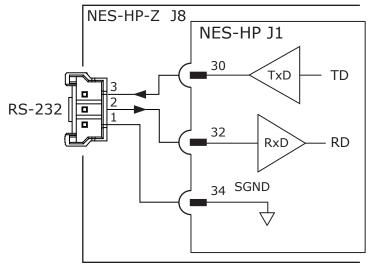
J6 STO

Signal	Pin		Signal
STO1_24V_IN	2	1	STO1_RTN
STO_1	4	3	STO1_RTN
N.C.	6	5	N.C.
STO2_24V_IN	8	7	STO2_RTN
STO_2	10	9	STO2_RTN
N.C.	12	11	N.C.
STO_STATUS_ OUTPUT_RTN	14	13	SGND
+5V	16	15	STO_STATUS_OUTPUT

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-138164 Rev 01

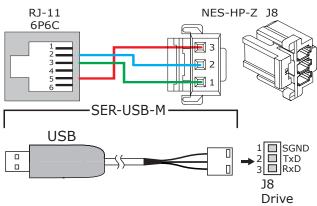
Fax: 781-828-6547 Page 18 of 30


NES-HP-Z: RS-232

RS-232 CONNECTION

The RS-232 port is used to configure the drive for stand-alone applications, or it is used for a configuration before it is installed into an EtherCAT network. Copley software communicates with the drive over this link and it is then used for the complete drive setup. The EtherCAT Device ID is set via RS-232 along with other operating functions.

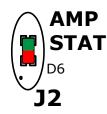
J8 RS-232


Signal	Pin
RX232TX1	3
RS232RX1	2
SGND	1

Compatibility with the existing serial adapter cables can be done using an RJ-11 socket (6P6C) wired as shown in the diagram.

Molex: 42410-6170 Modular Jack, 6 terminals, size 6

Copley offers an SER-USB-M serial port adapter. This serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 230,400. The SER-USB-M cable has output levels that are compatible with NES-HP-Z serial port.


NES-HP-Z: AMP STATUS LED

DRIVE STATUS LED (AMP)

A bi-color LED displays the state of the drive. Colors do not alternate, and can be solid ON or BLINKING. If multiple conditions occur, only the top-most condition will be displayed.

When that condition is cleared, the next condition in the table is shown.

LED	Condition Description	
RED/BLINKING	Latching fault. Operation cannot resume until the drive is Reset.	
RED/SOLID	Transient fault condition. Drive can resume the operation when the condition causing the fault is removed.	
GREEN/SLOW-BLINKING	Drive OK but NOT-enabled. Can run when enabled.	
GREEN/FAST-BLINKING	Positive or Negative limit switch active. Drive can only move in the direction not inhibited by limit switch.	
GREEN/SOLID	Drive OK and enabled. Can run in response to reference inputs or EtherCAT commands.	

LATCHING FAULTS

Default	Optional (Programmable)
Short circuit (Internal or External)	Over-voltage
Drive over-temperature	Under-voltage
Motor over-temperature	Motor Phasing Error
Feedback Error	Command Input Lost
Following Error	Motor Wiring Disconnected
STO Active	Over Current (latched)

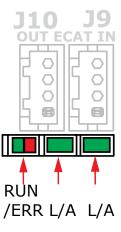
Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-138164 Rev 01

Tel: 781-828-8090 Fax: 781-828-6547 Page 19 of 30

NES-HP-Z: J9~J10 ETHERCAT COMMUNICATIONS

EtherCAT is the open, real-time Ethernet network developed by Beckhoff based on the widely used 100BASE-TX cabling system. EtherCAT enables high-speed control of multiple axes while maintaining tight synchronization of clocks in the nodes.

ETHERCAT CONNECTIONS


J9 and J10 accept the Ethernet cables. The IN port connects to a main device, or connects to the OUT port of a device that is 'upstream', between the Nano and the main device.

Data protocol is CANopen application protocol over EtherCAT (CoE) based on DSP-402 for motion control devices. More information on EtherCAT can be found on this web-site: http://ethercat.org/default.htm

The OUT port connects to 'downstream' nodes. If the drive is the last node on a network, only the IN port is used. No terminator is required on the OUT port.

ETHERCAT LEDS

RUN GREEN shows the state of the ESM (EtherCAT State Machine).		RED shows errors such as watchdog timeouts and an unsolicited statchange in the drive due to local errors.	
LED	Condition	LED Condition	
Off	= Init	Off	= EtherCAT communications are working correctly.
BLINKING	= Pre-operational	BLINKING	= Invalid Configuration, general configuration error.
SINGLE FLASH	= Safe-Operational	SINGLE FLASH	= Local error, sub device has changed EtherCAT state autonomously.
On	= Operational	DOUBLE FLASH = PDO or EtherCAT watchdog timeout, or an appli watchdog timeout has occurred.	

L/A

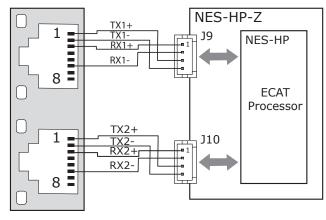
A GREEN LED indicates the state of the EtherCAT network.

LED	Link	Activity	Condition
On	Yes	No	= Port Open
FLICKERING	YES	YES	= Port Open with activity
Off	No	(N/A)	= Port Closed

ETHERCAT DEVICE ID

In an EtherCAT network, sub devices are automatically assigned fixed addresses based on their position on the bus. Stations on EtherCAT are automatically addressed by their bus location. The first drive on the network is station address -1. The second drive on the network is station address -2, and so on.

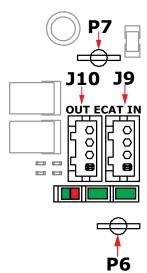
When a device must have a positive identification that is independent of cabling, a Device ID is required. This Device ID can be set using the digital inputs or set with a programmed value. Use the Copley software to configure both of these modes.


NES-HP-Z: J9-J10 ETHERCAT

ETHERCAT CONNECTORS

For user PC boards that use the standard P6 receptacle for their network connections, refer to the following diagrams that show the connections to the EZ board connectors.

P6

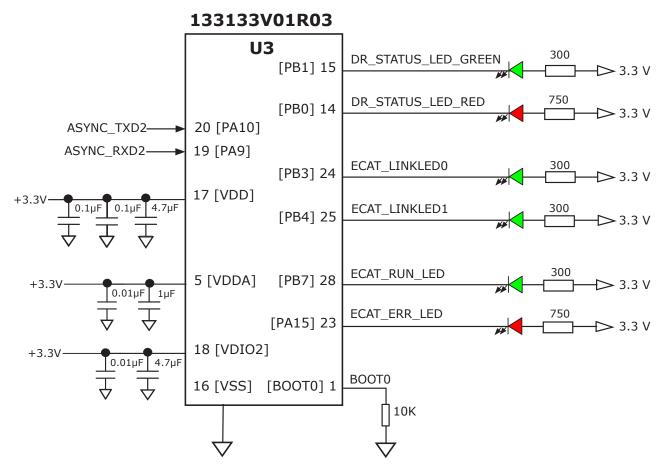

Signal	Pins
TX1+	1
TX1-	2
RX1+	3
N.C.	4
N.C.	5
RX1-	6
N.C.	7
N.C.	8

J9 ECAT-IN

J10 ECAT-OUT

Signal	Pin	Signal	Pin
RX1+	1	RX2+	1
RX1-	2	RX2-	2
TX1+	3	TX2+	3
TX1-	4	TX2-	4

Tel: 781-828-8090


Note: In the above diagram, P6 & P7 are used for the shields in the J9 and J10 EtherCAT cables.

NES-HP-Z: DRIVE AND NETWORK STATUS LEDS

The following diagram shows the NES-HP-Z drive and network status LEDS. The NES-HP-Z status LEDs descriptions are listed below.

- The "STM" chip uses the serial data from ASYNC TXD2 to drive LEDs.
- DR STATUS LED X signals drive the AMP STATUS LED (refer to the detail on page 2).
- ECAT_XXX_LED show the network status of the drive communication.
- ECAT LINKLEDx signals show the presence of activity on the ECAT connections.

NES-HP-Z Drive and Network Status LEDs Diagram

Ordering Information: U3

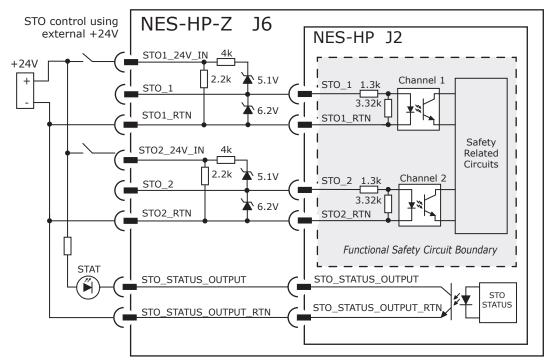
In the above diagram, U3 can be purchased through the Copley approved supplier, Arrow Electronics.

Contact Information: Arrow Electronics 4 Technology Drive Peabody, MA 01960 Phone: (978) 538-8500

Refer to the table below for more details.

Part Number	Supplier	Description
133133V01R03	Arrow Electronics	Pre-programmed uC for Drive and Network Status LEDs.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 21 of 30



NES-HP-Z: J6 SAFE TORQUE OFF (STO)

DESCRIPTION

The following diagram shows the configuration to use for the external 24V to energize the STO inputs.

Both STO inputs must be energized in order to enable the drive.

NES-HP-Z J6 (STO) Diagram

Note: In the diagram, it shows the +24V can be driven from the VLogic power supply.

- The STOx_24V_IN circuits can tolerate the +60V limit of the VLogic input.
- The STOx_IN maximum voltage limit is +7.0 Vdc.

STO STATUS OUTPUT

STO1	0	1	0	1
STO2	0	0	1	1
STAT	0	0	0	1

Note: In the STO Status Output table, the following describes each row.

- •STO1 & STO2 rows, 1=24V are applied between the IN-24V and RTN. 0=open-circuit.
- •STAT row, 1=the optocoupler is On. 0=the optocoupler is Off.
- •STAT output is On (True) when both STO1 & STO2 are energized, allowing the drive to be enabled and to produce torque.

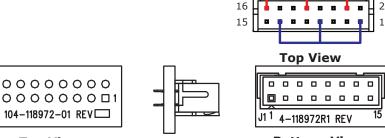
J6 STO

Signal	Pin		Signal
STO1_RTN	1	2	STO1_24V_IN
STO1_RTN	3	4	STO_1
N.C.	5	6	N.C.
STO2_RTN	7	8	STO2_24V_IN
STO2_RTN	9	10	STO_2
N.C.	11	12	N.C.
SGND	13	14	STO_STATUS_OUTPUT_RTN
STO_STATUS_OUTPUT	15	16	+5V

STO OPERATION

STO Input Voltage	STO State	
STO1_24V_IN <i>AND</i> STO2_24V_IN ≥ 15 Vdc	STO Inactive. Drive can be enabled to produce torque.	
STO_1 <i>AND</i> STO_2 ≥ 3.0 Vdc	310 Inactive. Drive can be enabled to produce torque.	
STO1_24V_IN <i>OR</i> STO2_24V_IN < 5.0 Vdc		
STO_1 <i>OR</i> STO_2 ≤ 0.8 Vdc	STO Active. Drive cannot be enabled to produce torque.	
STO_1 OR STO_2 OPEN		

Note: In the above table, the voltages are referenced between an STO_x and an STOx_RTN in J6. For example, $V(STO1) = V(STO1_24V_IN) - V(STO1_RTN)$


Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 22 of 30

NES-HP-Z: J6 SAFE TORQUE OFF (STO) BYPASS

Bypassing is used for users who do not use the STO function. The STO-Bypass has jumpers that use the VLogic to energize the STO inputs. This disables the STO function, allowing the drive to be enabled from hardware inputs or a network. The graphic shows the wiring of the STO-Bypass.

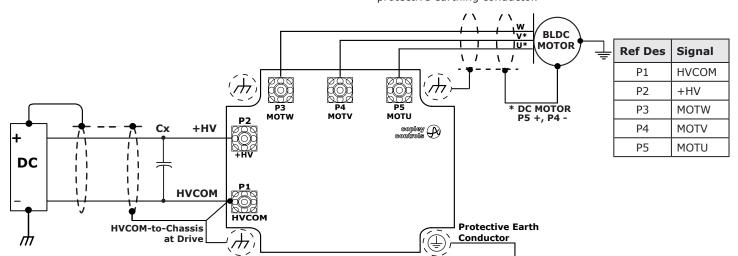
Top View

Bottom View

NES-HP-Z: +HV, MOTOR, PROTECTIVE EARTH & CHASSIS GROUND CONNECTIONS

+HV

The +HV power supply outputs connect to terminal P2. HVCOM connects to terminal P1. An overall cable shield for the +HV/HVCOM pair is necessary to meet EMC requirements. As shown, this shield connects to the chassis ground at the power supply end and to chassis ground at the drive end. To minimize electrical noise, Copley recommends that the user connect the negative (-, HVCOM) terminal of the power supply with a short, direct path to the drive chassis ground located close to the drive.


P5, P4 and P3 are used for the motor windings U, V and W respectively. Motor cables typically have one wire for each of the three phases and a fourth wire for connecting the motor housing to protective earth. The protective earth conductor wire color is commonly GREEN with a YELLOW stripe. This user must connect this protective earthing conductor to a suitable protective earth connection point which is most often found on the frame of the machine into which the drive and motor are mounted.

Protective Earth

The Nano High Power drives are Protective Class I equipment relating to protection against electric shock. Accordingly, the drives have both basic insulation between circuits accessible conductive parts and offer a method of connecting a protective earthing conductor to prevent accessible conductive parts (the heatplate for example) from becoming 'hazardous live' in the event of a failure of the basic insulation. The PE symbol appears next to one of the four corner mounting holes on the module and identifies it as the connection point for the protective earthing conductor.

Chassis Ground Connection

The mounting holes other than the one specified as the Protective Earth connection point, are suitable connection points for connecting cable shields to Chassis Ground and for connecting the negative (-, HVCOM) power supply terminal to Chassis Ground.

*Note: In the diagram, the asterisk indicates the DC brush motors connect to P4 & P5.

Motor Connections Diagram

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLogic +9~60. 24V power is recommended. If the 24V Brake is used, 24V is required. If common to HV, do not exceed 60V. Use REGEN protection, and diode isolation from HV.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 23 of 30

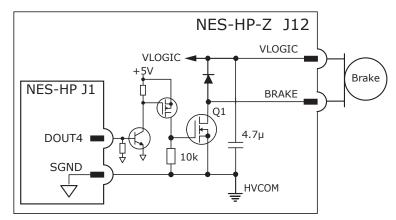
NES-HP-Z: J12 BRAKE

J12 BRAKE:

The EZ board has components that can actuate a brake when controlled by DOUT4. If it is not used for the brake, DOUT4 is programmable for other functions.

Use the Copley software to set the custom brake configuration. This configuration includes settings for VLogic, Initial Voltage, Time at Initial Voltage, Holding Voltage, and PWM Period.

SPECIFICATIONS


Input	Data	Notes
Voltage Range	Max	+6~60 Vdc
Output Current	Ids	1.0 Adc

J12 BRAKE

Signal	Pin
VLOGIC	2
BRAKE	1

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition	
LO BRAKE [DOUT4] HI	LO	Output MOSFET Q1 is OFF. Brake is un-powered and locks moto Motor cannot move. Brake state is Active.	
	Output MOSFET Q1 is On. Brake is powered, releasing motor. Motor is free to move. Brake state is NOT-Active.		

Copley software Default Setting for Brake Output [OUT4] is "Brake -Active Low."

Active = Brake is holding motor shaft (i.e. the *Brake is Active*). Motor cannot move.

No current flows in coil of brake.

Copley software I/O Line States shows [OUT4] as LO.

BRK Output voltage is HI (24V), MOSFET Q1 is OFF.

Servo drive output current is zero.

Servo drive is disabled, PWM outputs are Off.

Inactive = Brake is not holding motor shaft (i.e. the *Brake is NOT-Active*). Motor can move.

Current flows in coil of brake.

Copley software I/O Line States shows [OUT4] as HI.

BRK output voltage is LO (~0V), MOSFET Q1 is On.

Servo drive is enabled, PWM outputs are On.

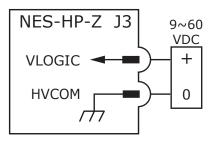
Servo drive output current is flowing.

NES-HP-Z: J3 VLOGIC

J3 VLOGIC

The J3 VLogic powers the internal logic and control circuits in the drive. When the STO feature is used, it must be produced by power supplies with the transformer isolation from the mains, PELV or

SELV ratings, and produce a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLogic can be driven from a single power supply.


SPECIFICATIONS

Input	Data	Notes
Voltage Range	Max	+9~60 Vdc
Innut Dawer	Туре	4 W
Input Power	Max	8 W

Note: The typical input power is no load on encoder +5V. The maximum input power is with two encoders @ 250 mA each, and +5V at maximum.

J3 VLOGIC

Signal	Pin
VLOGIC	2
HVCOM	1

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLogic +9~60. 24V power is recommended. If the 24V Brake is used, 24V is required. If common to +HV, do not exceed 60V. Use REGEN protection, and diode isolation from HV.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 24 of 30

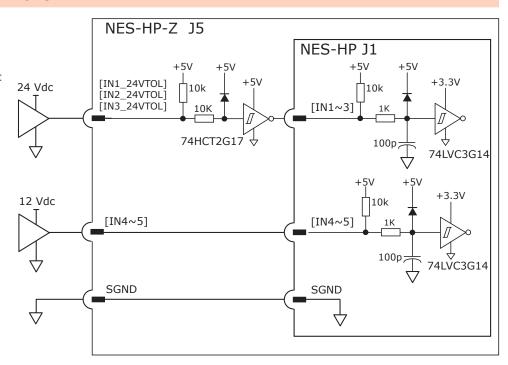
NES-HP-Z: J5 INPUTS & OUTPUTS

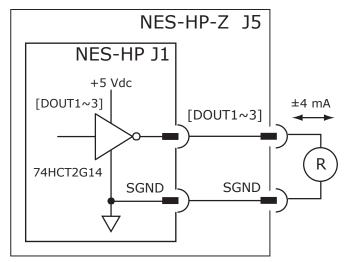
J5 has the following connections:

- Digital Inputs 1~5
- Digital Outputs 1~3
- Analog Differential Input
- Secondary Quad A/B/X Encoder Input

Note: IN1~3 are 24V compatible. IN4~5 are 12V tolerant.

J5 LOGIC INPUTS


Signal	Pins
IN1_24VTOL	6
IN2_24VTOL	8
IN3_24VTOL	10
IN4	18
IN5	20
SGND	11,17


J5 LOGIC OUTPUTS

Signal	Pins
DOUT1 [OUT1]	12
DOUT2 [OUT2]	14
DOUT3 [OUT3]	16
SGND	11,17

J5 I/O

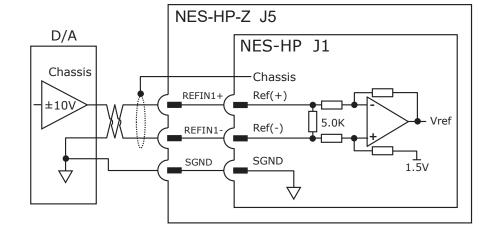
Signal	Pi	ns	Signal
/ENCA2	2	1	REFIN-
ENCA2	4	3	REFIN+
IN1_24VTOL	6	5	/ENCX2
IN2_24VTOL	8	7	ENCX2
IN3_24VTOL	10	9	+5VENC
DOUT1	12	11	SGND
DOUT2	14	13	/ENCB2
DOUT3	16	15	ENCB2
IN4	18	17	SGND
IN5	20	19	Chassis

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-138164 Rev 01

Fax: 781-828-6547 Page 25 of 30

NES-HP-Z: J5 ANALOG INPUT

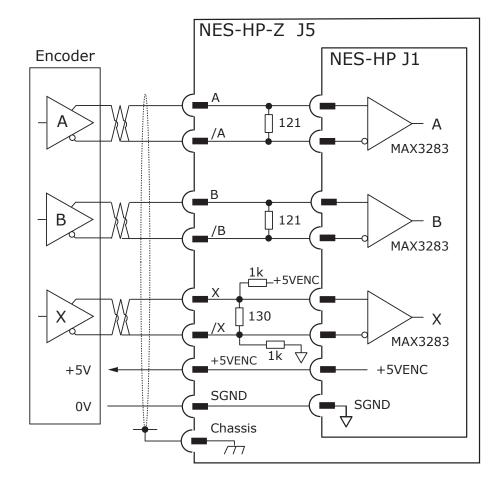

As a reference input, it takes Position/Velocity/Torque commands from a controller.

If it is not used as a command input, it can be used as generalpurpose analog input.

SPECIFICATIONS

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.0 kΩ

Signal	J5 Pins
Ref(+)	3
Ref(-)	1



NES-HP-Z: J5 SECONDARY ENCODER

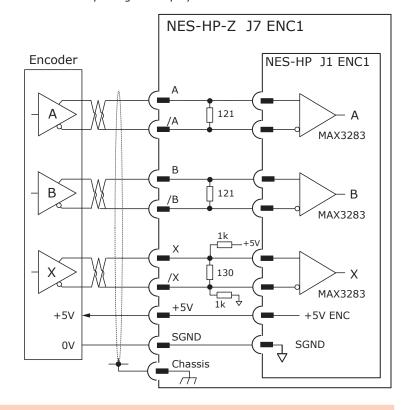
The secondary encoder is used when the load is not connected directly to the motor.

J5 ENC2 INPUTS

Signal	Pins
ENCA2 [A]	4
/ENCA2 [/A]	2
ENCB2 [B]	15
/ENCB2 [/B]	13
ENCX2 [X]	7
/ENCX2 [/X]	5
+5VENC	9
SGND	11,17
Chassis	19

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-138164 Rev 01

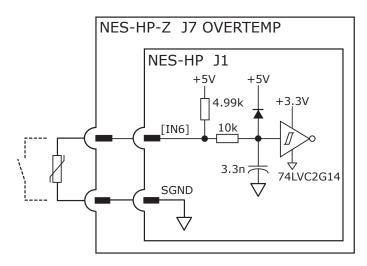
Tel: 781-828-8090 Fax: 781-828-6547 Page 26 of 30


NES-HP-Z: J7 PRIMARY ENCODER

The ENC1 is the Motor encoder and should be used in singleencoder applications.

J7 ENC1 INPUTS

Signal	Pins
ENCA1_UBC_DAT [A]	4
/ENCA1_UBC_DAT [/A]	3
ENCB1 [B]	6
/ENCB1 [/B]	5
ENCX1_UBC_CLK [X]	8
/ENCX1_UBC_CLK [/X]	7
OVERTEMP_IN [IN6]	9
+5VENC	2
SGND	1

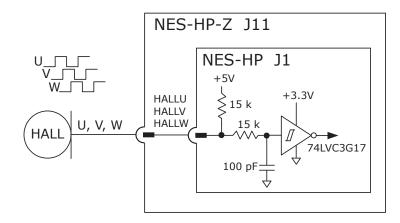

In dual-encoder applications, it can be assigned as Primary or Secondary using the Copley software.

NES-HP-Z: J7 OVERTEMP

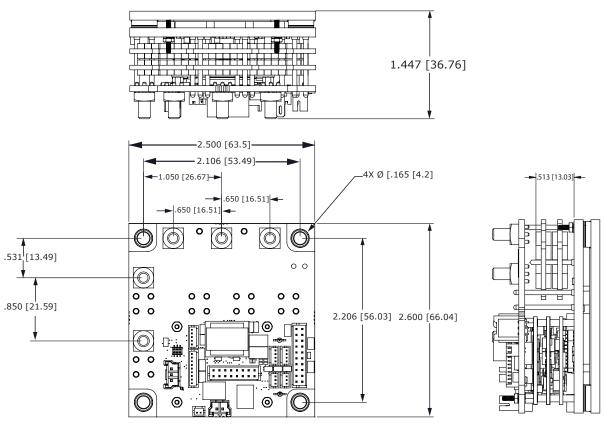
The Input IN6 has a 49 microsecond rise time RC filter with a 4.99 $k\Omega$ pullup resistor to +5 VDC. Input IN6 is designed to interface with an UL rated PTC Thermistor IAW BS 49990111(1987) which is the standard for the built-in thermal protection of the motor as a default.

If it is not used for the Motemp function, the IN6 can be reprogrammed for other input functions.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 P/N 16-138164 Rev 01



NES-HP-Z: J11 HALLS


J11 HALL INPUTS

Signal	Pins
Hall U	5
Hall V	4
Hall W	3
+5VENC	2
SGND	1

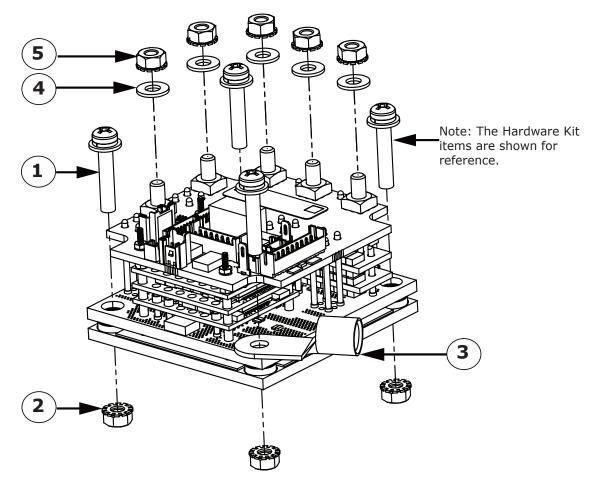
NES-HP-Z: DIMENSIONS

The following diagram shows the NES-HP-Z dimensions measured in inches and mm.

NES-HP-Z Dimensions Diagram

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 P/N 16-138164 Rev 01

Fax: 781-828-6547 Page 28 of 30



NES-HP-Z: ASSEMBLY

In the NES-HP-Z Components Assembly diagram, it shows the location of the hardware parts on the drive. Use the screws to connect the nuts and washers to secure the parts together.

For information on the hardware kit components, type, size, manufacturer, part number and description, refer to the tables below.

NES-HP-Z Components Assembly Diagram

N-HP-Z-MK: Nano-EZ-HP Module Hardware Kit

#	Item	Oty	Mfgr	Part Number	Description
1	Screw	4	Arnold Industries	1193NK	M4 SEMS Screw, 20mm long, Phillips Pan Head
2	Nut	4	Arnold Industries	BN1364M4NK	M4 KEP Nut
3	Terminal Lug	6	Panduit Corporation	P4-10R-T	#10 Ring Teminal, 4AWG Wire, Non-Insulated

Nano-EZ-HP Module (Preassembled Parts)

#	Item	Qty	Mfgr	Part Number	Description
4	Washer	5	Fastenal	0171926	M4 Flat Washer, Brass Nickel
5	Nut	5	Arnold Industries	BN1364M4NK	M4 KEP Nut

Note: Item numbers 4 & 5 are assembled with the product and are used for the customer wire attachment connecting to the Power-In and Motor-Out terminals. If the customer requires additional parts, refer to the information for items 4 & 5 in the above table.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 29 of 30

ORDERING GUIDE

NES-HP

Part Number	Description	
NES-090-80-C*	Nano High Power Module EtherCAT NES-HP servo drive, 80/80 A, 90 Vdc	
NES-090-80-C-Z	Nano High Power Module soldered to EZ board EtherCAT, NES-HP-Z servo drive, 80/80 A, 90 Vdc	
NES-090-140-C*	Nano High Power Module EtherCAT NES-HP servo drive, 140/140 A, 90 Vdc	
NES-090-140-C-Z	Nano High Power Module soldered to EZ board EtherCAT, NES-HP-Z servo drive, 140/140 A, 90 Vdc	
*Note: NES-HP units must be soldered directly to a mounting PCBA.		

Accessories for NES-HP

Part Number	Description	
N-HP-MK	Hardware Kit, Nano and Nano Plus HP MOD Customer Assembly	

Accessories for NES-HP-Z

Part Number	Description	
NS-Z-CK	Connector Kit for Nano	
N-HP-Z-MK	Hardware Kit, Nano and Nano Plus HP EZ Customer Assembly	
SER-USB-M	USB to 3-Pin Molex Adapter Cable	

Connector Kit for Nano HP

	Qty	Ref	Name	Description	MFGR: Part Numbers
	1	J12	Brake	CONN WIRE-MT HSG SKT 1X2P 1.25MM LKG NYL BEIGE	HIROSE: DF13-3S-1.25C
	2	J13, J14	CANopen	CONN WIRE-MT HSG SKT 1X3P 1.25MM LKG NYL BEIGE	HIROSE: DF13-3S-1.25C
	2	J9, J10	EtherCAT	CONN WIRE-MT HSG SKT 1X4P 1.25MM LKG NYL BEIGE	HIROSE: DF13-4S-1.25C
	1	J11	Halls	CONN WIRE-MT HSG SKT 1X5P 1.25MM LKG NYL BEIGE	HIROSE: DF13-5S-1.25C
	1	J7	ENC1 Motemp	CONN WIRE-MT HSG SKT 1X9P 1.25MM LKG NYL BEIGE	Hirose: DF13-9S-1.25C
	24	J7,J9,J10, J11,J12, J13,J14		CONN CONTC SKT CRMP 30-26GA 1MM MAX INSUL DIA AU	Hirose: DF13-2630SCFA
	1	J6	STO STO	CONN WIRE-MT HSG RCPT 2X8P 2X2MM LKG NYL BLK	Hirose: DF11-16DS-2C
NS-Z-CK	1	J17	IN1~5, DOUT1~3, ENC2, AREF	CONN WIRE-MT HSG RCPT 2X10P 2X2MM LKG NYL BLK MATING 129846	Hirose: DF11-20DS-2C
Connector Kit	36			CONN CONTC SKT CRMP 28-24GA 1.45MM MAX INSUL DIA AU	Hirose:DF11-2428SCFA (04)
	1	J19	Vlogic	CONN WIRE-MT HSG RCPT 1X2P 2MM LKG POLYEST NAT	Molex:35507-0200
	1	Ј8	RS-232	CONN WIRE-MT HSG RCPT 1X3P 2MM LKG POLYEST NAT	Molex:35507-0300
	2	P16, P17	Cable Shields	FASTON RCPT .11125W .02THK 26-22GA POSTIVE LOCK	TE:353249-2
	3		DF13 Wires	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD BLK AU 12IN	Hirose:H4BBG-10112-B6
	19		DF13 Prewire	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD WHT AU 12IN	Hirose:H4BBG-10112-W6
	20		DR11 Wires	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD WHT AU 12IN	Hirose:H3BBG-10112-W6
	3		DF11 GP	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD RED AU 12IN	Hirose:H3BBG-10112-R6
	3		DF13 Wire	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD RED AU 12IN	Hirose:H4BBG-10112-R6
	1		P6,HVCOM	CBL ASSY SKT CONTC TO FREE END 1COND 24GA 7STRD BLK SN 12IN	Hirose:0502128000-12-B4
	1		J19,+VLOGIC	CBL ASSY SKT CONTC TO FREE END 1COND 24GA 7STRD RED SN 12IN	Hirose:0502128000-12-R4
	3		DF11	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD BLK AU 12IN	Hirose:H3BBG-10112-B6
	1		Brake Wire	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD BLU AU 12IN	Hirose:H4BBG-10112-L6
	1		STO-Bypass PCB	BD ASSY, STO BYPASS BOARD	Copley: 104-118972-01

Note: Specifications subject to change without notice.

REVISION HISTORY

16-138164 Document Revision History

10-150104 Document Revision History		
Revision	Date	Remarks
00	March 14, 2025	Initial released version
01	July 21, 2025	Update the datasheet to include Nano HP diagrams, photos, wiring connections, specifications, STO values & weights (where applicable)Replace CME with Copley software.

Trademarks: CANopen® is a registered trademark of CAN in Automation, EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-138164 Rev 01 Page 30 of 30