

Ether CAT.

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

[AFS] Advanced Feature Set

- 32-bit Floating Point Filters
- Multiple Advanced Filters
- Frequency Analysis Tools

Control Modes

- Cyclic Synchronous Position-Velocity-Torque (CSP, CSV, CST)
- Cyclic Synchronous Torque with Commutation Angle (CSTCA)
- Profile Position-Velocity-Torque
- Interpolated Position, Homing
- Indexer, Point-to-Point, PVT
- · Camming, Gearing

Command Interface

- CANopen® application protocol over EtherCAT (CoE)
- · ASCII, Serial Binary, and Discrete I/O
- Stepper or Quad A/B Position Commands
- PWM Velocity-Torque Command
- Master Encoder (Gearing, Camming)
- ±10 V Position-Velocity-Torque

Communications

- EtherCAT®
- RS-232

Feedback

- Primary Absolute
 BiSS-C Unidirectional
 SSI Absolute or Incremental
- Secondary Incremental Differential Quad A/B/X
- Dual Feedback
- Digital Halls

I/O

- 1 Analog Input ±10V, 12-bit
- 5 High-speed Digital Inputs
- 1 Motor Overtemp Input
- 4 High-speed Digital Outputs

Safe Torque Off

• SIL 3, Category 3, PL e

Dimensions, Weight

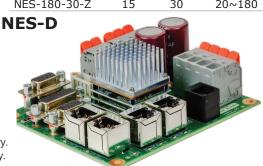
- NES: 1.38 x 1.18 x 0.92 in [35 x 30 x 23.4 mm], 1.0 oz [29 g]
- NES-Z: $1.38 \times 1.85 \times 1.32$ in [35 x 47 x 33.6 mm], 2.0 oz [57 g]
- NES-D: 3.82 x 4.42 x 1.77 in [97.1 x 112.4 x 45 mm], 7.8 oz [221 g]*
 *Note: Optional heatsink weight: 0.58 oz [16.5 g]

-Z and -D have these ratings.

Note 1:Append -D for Module/Dev Board Assy [-D]

Append -Z for Module/Board Assy [-Z]

NOTE 2:For NES-090-70-D & NES-090-180-30-D assemblies, heatsinks are installed at the factory. For NES-090-10-D & NES-180-10-D assemblies, heatsinks are not installed at the factory.


NES

Model	Ic	Ιp	VDC
NES-090-10	5	10	9~90
NES-090-70	35	70	9~90
NES-180-10	5	10	20~180
NES-180-30	15	30	20~180

Ic	Ιp	VDC
5	10	9~90
35	70	9~90
5	10	20~180
15	30	20~180
	5 35 5	5 10 35 70 5 10

Model	Ic	Ιp	VDC
NES-090-10-D	5	10	9~90
NES-090-70-D	35	70	9~90
NES-180-10-D	5	10	20~180
NES-180-30-D	15	30	20~180

DESCRIPTION

Nano is the smallest servo drive that Copley offers and can be mounted directly on the motor or within the robotic joints. It can satisfy requirements of the robotics, AGV, industrial machinery, medical/life-sciences and aerospace industries. The NES module may be implemented in a customer application using only connectors, or it can be used when the power pins may be soldered for high load current applications.

The NES-Z is a small form factor available for immediate integration into a customer application used with industry standard connectors and a heat plate mounted to the frame. The NES-D is a Development Kit used for prototyping.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 1 of 47

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

			emperature = 25 °C.	TTV TTVITIGAT		
MODEL	NES-090-10	NES-090-70	NES-180-10	NES-180-30		
	NES-090-10-D NES-090-10-Z	NES-090-70-D NES-090-70-Z	NES-180-10-D NES-180-10-Z	NES-180-30-D NES-180-30-Z		
OUTPUT POWER						
Peak Current	10 (7.07)	*70 (49.5)	10 (7.07)	30 (21.2)	ADC (Arms, sinusoidal)	
Peak Time	1	1	1	1 (10.6)	Sec	
Continuous Current Peak Output Power	5 (3.54) 0.9	*35 (24.8) 6.3	5 (3.54) 1.8	15 (10.6) 5.4	ADC (Arms, sinusoidal) kW	
Continuous Output Power	0.45	3.15	0.9	1.8	kW	
			must be soldered to	a mounting PCBA to	meet this output.	
NPUT POWER						
HVmin to HVmax	+9 to +90	+9 to +90	+20 to +180	+20 to +180	Vdc, transformer-isolated	
Ipeak Icont	10 5	70 35	10 5	30 15	ADC (1 sec) peak ADC continuous	
VLogic	+9 to +60	+9 to +60	+9 to +60	+9 to +60	Vdc, transformer-isolated	
		oder, 6 W with encode			vac, transformer isolated	
WM OUTPUTS		,	,			
Type		phase inverter, 16 kH	z center-weighted PV	VM carrier, space-ved	ctor modulation	
PWM Ripple Frequency	32 kHz					
SANDWIDTH	2.5.1.1	at and the form of the form of the control of		d to do store a		
Current Loop, Small Signal HV Compensation		oical, bandwidth will v ı HV do not affect ban		a inductance.		
Current Loop Update Rate	16 kHz (62		awiatii.			
Position & Velocity Loop Update R						
OMMAND INPUTS						
EtherCAT		(CoE) CANopen® ove				
		chronous Position/Velo		(5) (5)		
		tion/Velocity/Torque,				
Signals		chronous Torque with, TX1+, TX1-, RX2+,		(CSTCA)		
Stand-Alone Mode	KAIT, KAI	, IXIT, IXI-, KXZT,	, KAZ-, TAZT, TAZ-			
Digital Position Reference			oper Commands (2 M	,		
Digital Taurus & Valacity Defenses	Quad A/B		line/sec, 8 Mcount/s)	
Digital Torque & Velocity Reference	city Reference PWM, Polarity PWM = 0% - 100%, Polarity = 1/0 PWM 50% PWM = 50% ±50%, no polarity signal required.					
			Hz minimum, 100 kH	, -	eu.	
		PWM minimum pulse width: 220 ns				
Indexing	Up to 32 s	equences can be laund	ched from inputs or A	SCII commands.		
Camming		AM tables can be stor	•			
ASCII	RS-232, 90	500~230,400 Baud, 3	-wire			
IGITAL INPUTS MODULE Number	6					
IN1~5	6 General purpose	innuts				
1111-13			RC filter, max, input	voltage = +12 Vdc.	10 kΩ pull-up to +5 Vdc,	
		sitive threshold, 0.6 V			, , , , , , , , , , , , , , , , , , , ,	
		nt assumes active driv				
IN6					nput voltage = +12 Vdc	
DIGITAL INPUTS NES-D, NES-Z	4.99 kΩ pull-up	to +5 Vdc, 2.2 Vdc m	nin. positive threshold	1, 0.6 Vdc max. nega	itive threshold	
•						
IN1~3					atible, 10 k Ω pull-up to +5 Vdo	
IN4~5		sitive threshold, +0.6			10 kΩ pull-up to +5 Vdc,	
1114~3		sitive threshold, 0.6 \			10 ksz puli-up to +3 vuc,	
IN6		,			. input voltage = +12 Vdc	
		o +5 Vdc, 2.2 Vdc mi				
IGITAL OUTPUTS MODULE						
Number	4					
OUT1~4		MOS Schmitt trigger, f				
NICITAL OUTDUTS NES D. NES		VOH = 4.18 Vdc, Sir	IK 4 MA @ VOL = 0.2	zo vac		
DIGITAL OUTPUTS NES-D, NES- Number	<u> </u>					
OUT1~4	74HCT14 5 V C	MOS Schmitt trigger, f	unctions programma	ble. +5 Vcc		
* * : = - :		VOH = 4.18 Vdc, Sir				

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 2 of 47

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

GENERAL SPECIFICATIONS

ANALOG INPUT

Number

Type Differential, ± 10 Vdc range, $5.0 \text{ k}\Omega$ input impedance to a 12 bit ADC, single-pole low pass filter with a

14.5 kHz -3dB bandwidth.

Function Torque, Velocity, or Position command, or functions as a general purpose analog input.

SERIAL COMMUNICATION PORT

Signals RxD, TxD, SGND

RxD input is 74LVC14 3.3 V Schmitt trigger with 10 $k\Omega$ pull-up to +5V

TxD output is 74HCT14 5 V Schmitt trigger

Mode Full-duplex, DTE serial communication port for drive setup and control, 9,600 to 230,400 bits/second

Protocol ASCII or Binary format

Isolation Non-isolated. Referenced to Signal Ground

SERIAL COMMUNICATION PORT, NES-D, NES-Z

An ADM3101E transceiver provides standard RS-232 signal levels. NES-D accepts RJ11 cable.

NES-Z requires an SER-USB-M or cable terminated to Molex 3 Pin to connect to the Serial port.

Signals RxD, TxD, SGND

ETHERCAT PORT

Format 100BASE-TX

Protocol EtherCAT® (CoE) CANopen® over Ethernet

Isolation External magnetics required for module. NES-D and NES-Z have internal magnetics.

Max. voltage with respect to grounds: 32 Vdc.

MOTOR CONNECTIONS

Motor U,V,W Drive outputs to 3-phase brushless motor, Wye or delta connected for DC brush motor use outputs U & V.

Minimum inductance: 200 µH line-line

Encoder Digital encoders, incremental and absolute (See FEEDBACK below).

Halls Digital U/V/W

Motemp Input is programmable to disable the drive if motor sensor drives input HI or LO.

FEEDBACK

Incremental Encoders:

Digital Incremental Encoder Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required).

RS-422 line receivers, 5 MHz maximum line frequency (20 M counts/sec), 74HCT thresholds

Absolute Encoders:

BiSS-C Unidirectional, SSI MA+, MA- (X, /X), SL+, SL- (A, /A) signals, clock output from drive, data returned from the encoder.

Terminators All encoder data inputs and clock outputs are differential and require external terminators.

Commutation Hall signals (U,V,W), 15 k Ω pull-up to +5V, 15 k Ω /100 pF RC to 74LVC3G14 Schmitt trigger at +5 Vcc

HALLS

U, V, W: Single-ended, 120° electrical phase difference

Schmitt trigger, 1.0 µs RC filter from active HI/LO sources, 5 Vdc compatible

15 k Ω pull-up to +5 Vdc, 74LVC, 3.3 V thresholds

+5V OUTPUT

Number

Rating 150 mA maximum. Protected for overload or shorts.

Available for optional peripherals immediately adjacent to the module.

+3.3V OUTPUT

Number

Rating 150 mA maximum. Protected for overload or shorts.

Available for optional microcontroller, RS-232 Transceiver, EtherCAT magnetics, LEDs, and Address Switches.

+5VENC OUTPUT

Number 2

Rating 250 mA nominal, 500 mA maximum. Protected for overload and shorts.

Note: The maximum total current for both outputs combined is 500 mA.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 3 of 47

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

GENERAL SPECIFICATIONS

SAFE TORQUE OFF (STO)

Function PWM outputs are inactive and the current to the motor will not be possible when the STO function is active.

Safety Integrity Level SIL 3, Category 3, Performance Level e (PL e)
Inputs 2 two-terminal: STO_1, STO1_RTN, STO_2, STO2_RTN

Type Opto-isolators, 5V compatible

Disabling Connecting both STO inputs to +5V will deactivate the STO function.

PROTECTIONS

HV Overvoltage $+HV > +95 \pm 1$ Vdc $+HV > +95 \pm 1$ Vdc $+HV > +185 \pm 1$ Vdc $+HV > +185 \pm 1$ Vdc $+HV > +185 \pm 1$ Vdc $+HV > +9.0 \pm 0.5$ Vdc $+HV < +9.0 \pm 0.5$ Vdc $+HV < +20.0 \pm 0.5$ Vdc +HV < +2

Drive Over-Temperature PC Board > 90 °C +3/-0 °C Programmable as latching or temporary fault

Short Circuits Output to output, output to ground, internal PWM bridge faults

I²T Current Limiting Programmable: continuous current, peak current, peak time for drive and motor

Latching / Non-Latching Programmable response to errors.

MECHANICAL & ENVIRONMENTAL

Size, Weight NES: 1.38 x 1.18 x 0.92 in [35 x 30 x 23.4 mm], 1.0 oz [29 g]
NES-Z: 1.38 x 1.85 x 1.32 in [35 x 47 x 33.6 mm], 2.0 oz [57 g]

NES-2: 1.38 x 1.85 x 1.32 in [35 x 47 x 33.6 mm], 2.0 oz [57 g] NES-D: 3.82 x 4.42 x 1.77 in [97.1 x 112.4 x 45 mm], 7.8 oz [221 g]*

*Note 1: Add 0.58 oz [0.0165 kg] for the optional heatsink.

NOTE 2: For NES-090-70-D and NES-180-30-D assemblies, the heatsinks are installed at the factory. For NES-090-10, NES-090-10-D, NES-180-10 and NES-180-10-D assemblies, the heatsinks are optional.

Weight 0.8 oz [0.023 kg]

Ambient Temperature Operating: -40 °C to +45 °C, Storage: -40 to +85 °C storage

Humidity0 to 95%, non-condensingAltitude≤ 2000 m (6,500 ft)Vibration2 g peak, $10 \sim 500$ Hz (Sine)Shock10 g, 10 ms, $\frac{1}{2}$ Sine pulseContaminantsPollution Pages 2

Contaminants Pollution Degree 2

AGENCY STANDARDS CONFORMANCE

Standards and Directives Functional Safety

IEC 61508-1, IEC 61508-2, IEC 61508-3, (SIL 3)

Directive 2006/42/EC (Machinery) ISO 13849-1 (Cat 3, PL e) IEC 61800-5-2 (SIL 3)

Product Safety

Directive 2014/35/EU (Low Voltage)

IEC 61800-5-1

EMC

Directive 2014/30/EU (EMC)

IEC 61800-3 IEC 61800-5-2

Restriction of the Use of Certain Hazardous Substances (RoHS)

Directive 2011/65/EU and its amendments 2015/863/EU

Approvals

UL Recognized Component to:

UL 61800-5-1, UL 61800-5-2 IEC 61800-5-1, IEC 61800-5-2

A Refer to t

FUNCTIONAL SAFETY

ISO 13849-1 Up to PL e (Cat.3) IEC 61800-5-2 Up to SIL 3

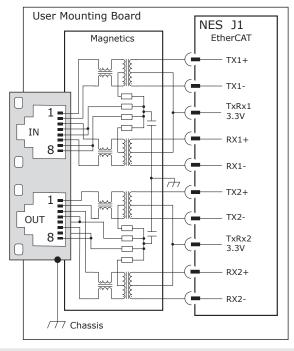
Refer to the Copley, Nano User Guide, Part Number 16-121699.

The information provided in the Copley, Nano User Guide, Part Number 16-121699, must be considered for any application using the Nano drive STO feature.

DANGER

Failure to heed this warning can cause equipment damage, injury, or death.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 4 of 47



ETHERCAT COMMUNICATIONS

EtherCAT is the open, real-time Ethernet network developed by Beckhoff based on the widely used 100BASE-TX cabling system. EtherCAT enables high-speed control of multiple axes while maintaining tight synchronization of clocks in the nodes.

Data protocol is CANopen application protocol over EtherCAT (CoE) based on CiA 402 for motion control devices. More information on EtherCAT can be found on this website: http://ethercat.org

NETWORK RJ-45

IN Name	Pin	OUT Name	
Ecat TX1+	1	Ecat TX2+	
Ecat TX1-	2	Ecat TX2-	
Ecat RX1+	3	Ecat RX2+	
D/C	4	D/C	
R/C	5	R/C	
Ecat RX1-	6	Ecat RX2-	
D/C	7	D/C	
R/C	8	R/C	

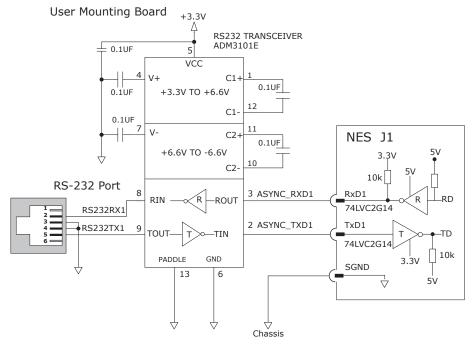
Note: The term, R/C, refers to the 75 Ω and 1000 pF components shown.

DRIVE J1

Signal	Pin
[TX1+] TXPA	24
[TX1-] TXNA	26
+3.3V_TXRX1	19
[RX1+] RXPA	20
[RX1-] RXNA	22
[Tx2+] TXPB	25
[Tx2-] TXNB	23
+3.3V_TXRX2	21
[Rx2+] RXPB	29
[Rx2-] RXNB	27

RS-232 COMMUNICATIONS

The serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 230,400 Baud. Using the Copley software, it can be programmed for drive configuration and setup or programmed for the external equipment sending the ASCII commands.


In the diagram, the circuit shown is used on the -D and -Z boards. It is recommended for user's PC boards. It converts the single-ended TTL signals levels in the NES into the ANSI RS-232 levels which are the standard for serial communications and computer COMM ports.

DRIVE J1

Signal	Pins
RxD1	30
TxD1	32
SGND	34

RS-232 PORT

Signal	Pins
RS232RX	2
RS232TX	5
SGND	3,4

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 5 of 47

SAFE TORQUE OFF (STO)

The Safe Torque Off (STO) function is defined in IEC 61800-5-2. Two channels are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from producing torque in the motor.

This provides a positive OFF capability that cannot be overridden by the control firmware or the associated hardware components. When the opto-couplers are energized (current is flowing in the input diodes), the control core will be able to control the ON/OFF state of the PWM outputs to produce torque in the motor.

INSTALLATION

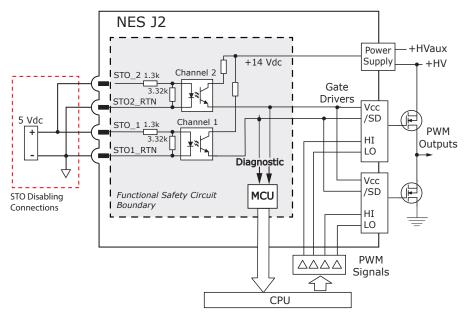
Refer to the Copley, Nano User Guide, Part Number 16-121699.

The information provided in the Copley, Nano User Guide, Part Number 16-121699, must be considered for any application using the drive's STO feature.

FAILURE TO HEED THIS WARNING CAN CAUSE EQUIPMENT DAMAGE, INJURY, OR DEATH.

STO DISABLE

In order for the PWM outputs of the NES to be activated, the current must be flowing through the opto-couplers that are connected to the STO_1 and STO_2 terminals and the drive must be in an ENABLED state. When either of the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor.


In the diagram, it shows the connections that will energize both opto-couplers from a +5V source. When this is done, the STO feature is disabled and control of the output PWM stage is under control of the digital control core. If the STO feature is not used, these connections must be made in order for the drive to be enabled.

STO DISABLE CONNECTIONS

Note: The current must flow through both of the opto-couplers before the drive can be enabled.

FUNCTIONAL DIAGRAM

J2 STO

Name	Р	in	Name
STO_STATUS_OUTPUT	6	5	STO_STATUS_OUTPUT_RTN
STO_2	4	3	STO2_RTN
STO1 IN	2	1	STO1 RTN

ALL PIN NUMBERING INFORMATION FOR MODULE-LEVEL STO CONNECTIONS IN THIS DOCUMENT IS PIN NUMBERING CORRESPONDING TO THE BOTTOM ENTRY SOCKET (J2) ON THE USER MOUNTING BOARD. USER MOUNTING BOARDS MUST BE DESIGNED FOLLOWING THIS PIN NUMBERING CONVENTION.

Because the STO Header on the Nano module itself connects to the User Mounting Board via a bottom entry socket, the pin numbering for the header as marked on the Nano module is the mirror image of that for the bottom entry socket on the User Mounting Board.

STO OPERATION

STO Input Voltage	STO State	
STO_1 <i>AND</i> STO_2 ≥ 3.0 Vdc	STO Inactive. Drive can be enabled to produce torque.	
STO_1 <i>OR</i> STO_2 ≤ 0.8 Vdc	STO Active. Drive cannot be enabled to produce torque.	
STO_1 OR STO_2 Open	- 310 Active. Drive cannot be enabled to produce torque.	

Note: Voltages are referenced between STO_x and STOx_RTN in J2. For example, $V(STO1) = V(STO_1) - V(STO1_RTN)$

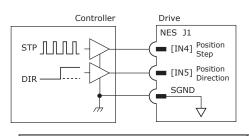
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 6 of 47

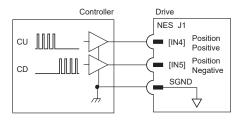
DIGITAL COMMAND INPUTS: POSITION

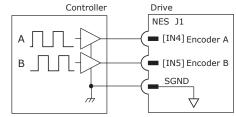
STAND-ALONE MODE DIGITAL POSITION-CONTROL INPUTS

NES works with motion controllers that output pulses to command Position.

The following formats are supported:


- Step/Direction
- In Step/Direction mode, a pulse-train controls motor Position, and the Direction is controlled by a DC level at the Direction input.
- Count-Up/Count-Down (CU/CD)
 - In the CU/CD (Count-Up/Count-Down) mode, the signals command the motor to move CW or CCW depending on to which input the pulse-train is directed.
- A/B Quadrature Encoder
- In the A/B Quadrature Encoder mode, the motor can also be operated in an electronic gearing mode by connecting the inputs to a quadrature encoder on another motor.


In all cases, the ratio between input pulses and motor revolutions is programmable.


STEP/DIRECTION INPUTS

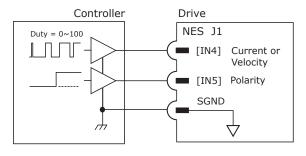
COUNT-UP/COUNT-DOWN INPUTS

QUAD A/B ENCODER INPUTS

Command Options	Signal	J1 Pins
Step, Count Up, Encoder A	IN4	8
Direction, Count Down, Encoder B	IN5	9

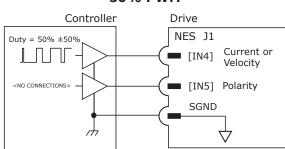
J1 SGND Pins 3,4,11,12,33,34,49,50

DIGITAL COMMAND INPUTS: VELOCITY, TORQUE


STAND-ALONE MODE DIGITAL VELOCITY-TORQUE INPUTS

NES works with motion controllers that output pulses to command Velocity or Torque.

The following formats are supported:


- Pulse/Direction
 - In Pulse/Direction mode, a pulse-train with variable duty cycle on IN4 controls Velocity or Torque from 0~100%. IN5 HI or LO controls the direction of the Velocity or polarity of the Torque.
- In 50% PWM mode, a single signal of 50% duty cycle commands 0% Velocity/Torque.
- -Increasing the duty cycle to 100% commands positive Velocity/Torque.
- -Decreasing the duty cycle to 0% commands negative Velocity/Torque.

PWM & DIRECTION

Command Options	Signal	J1 Pins
PWM Vel/Trk, PWM Vel/Trq & Direction	IN4	8
PWM/Dir Polarity, (none)	IN5	9

50% PWM

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121736 Rev 14

Fax: 781-828-6547 Page 7 of 47

HIGH SPEED INPUTS: IN1, IN2, IN3, IN4, IN5

The six digital inputs to the NES are programmable to a selection of functions.

All have 100 ns RC filters when driven by active sources (CMOS, TTL, etc.) and all have 10 k Ω pull-up resistors to +5 Vdc.

In addition to the selection of functions, the active level for each input is individually programmable.

Input level functions have programmable HI or LO to activate the function.

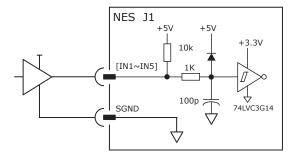
Input transition functions are programmable to activate on LO -> HI, or HI -> LO transitions.

INPUT LEVEL FUNCTIONS

- Drive Enable, Enable with Clear Faults, Enable with Reset
- PWM Sync
- Positive Limit Switch
- Negative Limit Switch
- Home Switch
- Encoder Fault
- Motor Temperature Sensor Input
- Motion Abort
- High-Resolution Analog Divide

INPUT TRANSITION FUNCTIONS

- Clear Faults and Event Latch
- Drive Reset
- PWM Sync Input
- Trajectory Update
- Count Input Edges, Save to Register
- High-Speed Position Capture
- Simulated Absolute Encoder Burst
- Abort Move if > N Counts From Destination in Register


SPECIFICATIONS

Input	Data	Notes
	HI	$V_{T} + = 1.42 \sim 2.38 \text{ Vdc}$
	LO	$V_{T} + = 0.68 \sim 1.6 \text{ Vdc}$
Input Voltages	Hys	$V_{H} = 0.44 \sim 1.26$
	Max	+12 Vdc
	Min	0 Vdc
Pull-Up	R1	10 kΩ
Low Pass Filter	R2	1 kΩ
	C1	100 pF
	RC	IN1~5: 0.1 μs IN6: 33 us

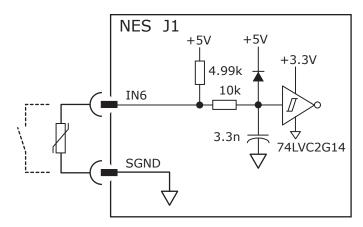
CONNECTIONS

Signal	J1 Pins
IN1	5
IN2	6
IN3	7
IN4	8
IN5	9

J1 SGND Pins
3,4,11,12,33,34,49,50

Consult Factory for Adapting 24V logic to 5V logic.

5V logic. Do not exceed 12V. Do not connect a 24V logic to this input.


MOTOR OVERTEMP INPUT: IN6

Input IN6 has a 33 microsecond rise time RC filter when driven by active sources (CMOS,TTL, etc), with a 4.99 k Ω pullup resistor to +5 VDC. Input IN6 is designed to interface with an industry standard

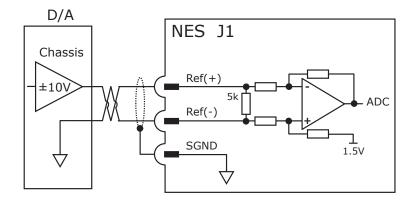
PTC thermistor IAW BS 49990111(1987) used for built-in thermal protection of the motor as a default. If it is not used for the Motemp function, IN6 can be re-programmed for other input functions.

CONNECTIONS

Signal	J1 Pins
IN6	10

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 8 of 47

ANALOG INPUT: AIN1


As a reference input, it takes Position/Velocity/Torque commands from a controller.

SPECIFICATIONS

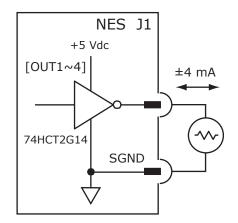
Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.0 kΩ

Signal	J1 Pins
Ref(+)	2
Ref(-)	1

If it is not used as a command input, it can be used as a general-purpose analog input.

DIGITAL OUTPUTS: OUT1~OUT4

Digital outputs [OUT1 \sim 4] are CMOS inverters. They operate from +5V and can source/sink \pm 4 mAdc.


In the diagram, the output functions shown are programmable to turn the output On (HI) or OFF (LO) when active.

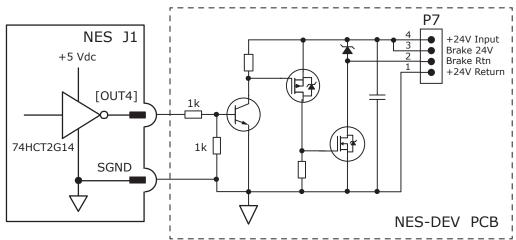
OUTPUT FUNCTIONS

- Fault
- Custom Event
- PWM Sync
- Custom Trajectory Status
- Custom Position-triggered Output
- Program Control
- Brake Control (see Brake Output: OUT4)

J1 Pins
13
14
15
16

J1 SGND Pins
3,4,11,12,33,34,49,50

BRAKE OUTPUT: OUT4


The default function of OUT4 is used to control a motor holding brake using the NES-D board that has components to sink the $\,$

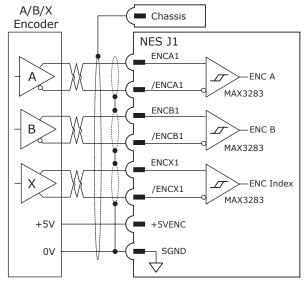
higher current of the brake. If it is not used for the brake control, it can be programmed as a logic output.

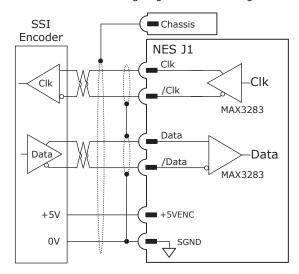
OUTPUT FUNCTION

- Motor holding brake when NES is mounted to a DEV PCB.
- Same functions as OUT1~OUT3 if the drive is used without a DEV PCB.

Signal	J1 Pins
OUT4	16

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 9 of 47




ENCODER 1 (PRIMARY FEEDBACK)

QUAD ENCODER WITH INDEX

SSI ABSOLUTE ENCODER

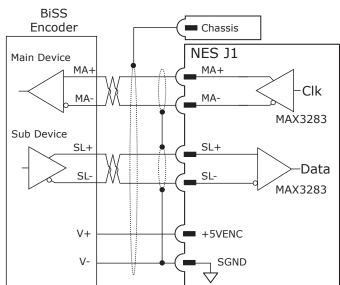
The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or a control system. The NES drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The number of encoder data bits and counts per motor revolution are programmable. The hardware bus consists of two signals: SCLK and SDATA. The SCLK signal is only active during transfers. Data is clocked in on the falling edge of the clock signal.

SSI, BISS SIGNALS

SSI	BiSS	J1 Pins
Clk	MA+	47
/Clk	MA-	48
Data	SL+	43
/Data	SL-	44
+5\	V	57,59

A/B/X SIGNALS

Signal	J1 Pins
ENCA1	43
/ENCA1	44
ENCB1	45
/ENCB1	46
ENCX1	47
/ENCX1	48
+5VENC	57,59


J1 SGND Pins
3,4,11,12,33,34,49,50

FRAME GROUND			
P1]		

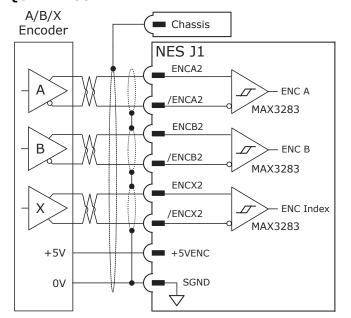
BISS-C ABSOLUTE ENCODER

BiSS-C is an - Open Source - digital interface used for sensors and actuators. BiSS-C refers to principles that comply with industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options.

- Serial Synchronous Data Communication
- · Cyclic at high speed
- 2 Unidirectional Lines Clock and Data
 - Line delay compensation for high speed data transfer
 - Request for data generation at slaves
 - Safety capable: CRC, Errors, Warnings
 - Bus capability including actuators
- Bidirectional
 - BiSS C-protocol: Continuous mode

Note: Single (outer) shields should be connected at the drive end. Inner shields should only be connected to Signal Ground on the drive.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 10 of 47



ENCODER 2: SECONDARY FEEDBACK

QUAD ENCODER WITH INDEX

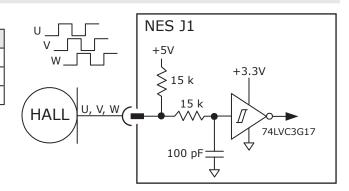
A/B/X SIGNALS

Signal	J1 Pins
ENCA2	51
/ENCA2	52
ENCB2	53
/ENCB2	54
ENCX2	55
/ENCX2	56
+5VENC	57,59

J1 SGND Pins
3,4,11,12,33,34,49,50

FRAME GROUND
P1

Noтe: The Secondary Encoder supports only A/B/X Incremental Encoders.


OTHER MOTOR CONNECTIONS

HALLS

Hall sensors in a brushless motor are driven from the magnetic field in the motor and provide commutation feedback without an encoder. When the sensors are used with incremental encoders, they enable the motor to operate without a phase-finding cycle.

HALL SIGNALS

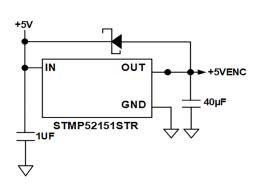
Signal	J1 Pins
HALLU	39
HALLV	40
HALLW	41

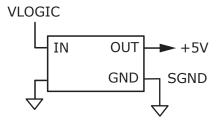
DC OUTPUT VOLTAGES

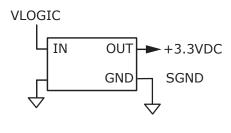
+5VENC

This voltage is used for encoders and it has an internal fault protection. The maximum current output is 500 mA shared between encoders. Current limiting occurs at 600 mA minimum, 1.0 A maximum.

+5V


This voltage is used for optional peripherals that are immediately adjacent to the module and it has an internal fault protection. The maximum current output is 150 mA.


+3.3 VDC


Tel: 781-828-8090

This voltage is used for the following connections that are immediately adjacent to the module:

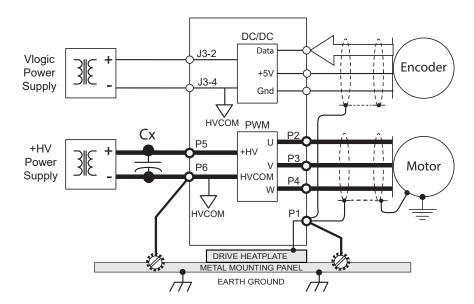
- Microcontroller
- RS-232 Transceiver
- EtherCAT Magnetics
- LEDs and Address Switches
- 150 mA maximum
- Protected for overload or shorts

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121736 Rev 14

Fax: 781-828-6547 Page 11 of 47

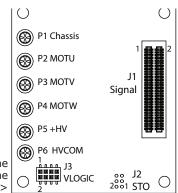
+HV CONNECTIONS

POWER SUPPLIES


The drive main power, +HV, is typically supplied by unregulated DC power supplies. These power supplies must be isolated from the mains, and all circuits should be grounded from earth wired to HVCOM at the drive. The +HV supply connects to P5 and P6.

To comply with the wiring practices, the +HV wires should be twisted together for noise suppression, and the power supply should not be grounded. By following the wiring guidelines, it ensures that the higher currents flowing in these conductors will not flow through any circuit grounds where they might induce noise.

During deceleration, the mechanical energy in the motor and load is converted back into electrical energy that must be dissipated as the motor comes to a stop. While some of this is converted to heat in the motor windings, the rest of it will flow through the drive into the power supply.


Use an external storage capacitor if the load has appreciable inertia. This should be sized, so that adding the undissipated energy from the motor will not raise the voltage beyond the point at which the drive shuts down. When this is not possible, an external 'dumper', or regenerative energy dissipater must be used which acts as a shunt regulator across the +HV and Gnd terminals.

A P6 connection to ground keeps the +HV power source stable at the drive while the voltage at the power supply (-) varies due to the cable resistance and the +HV current. Grounding at P1 provides a PE (Protective Earth) connection as well as a point to ground the motor cable shields.

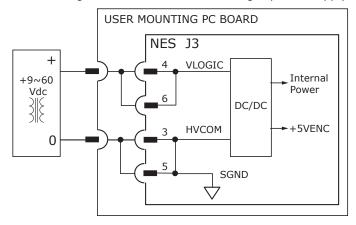
Signal	Pins				
Chassis	P1				
MOTU	P2				
MOTV	Р3				
MOTW	P4				
+HV	P5				
HVCOM	P6				
NOTE: The diagram shows the					

P1~P6

user mounting board. --->

VLOGIC CONNECTIONS

DESCRIPTION


VLogic is required for the operation of the drive. It powers the internal logic and control circuits. Encoder +5V is derived from VLogic. When the STO feature is used, VLogic must be produced by power supplies with a transformer isolation from the mains and

J3 VLOGIC

Name	Pin		Name
N.C.	2 1		N.C.
VLOGIC	4 3		HVCOM
VLOGIC	6	5	HVCOM
N.C.	8	7	N.C.

PELV or SELV ratings, and a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLogic can be driven from a single power supply.

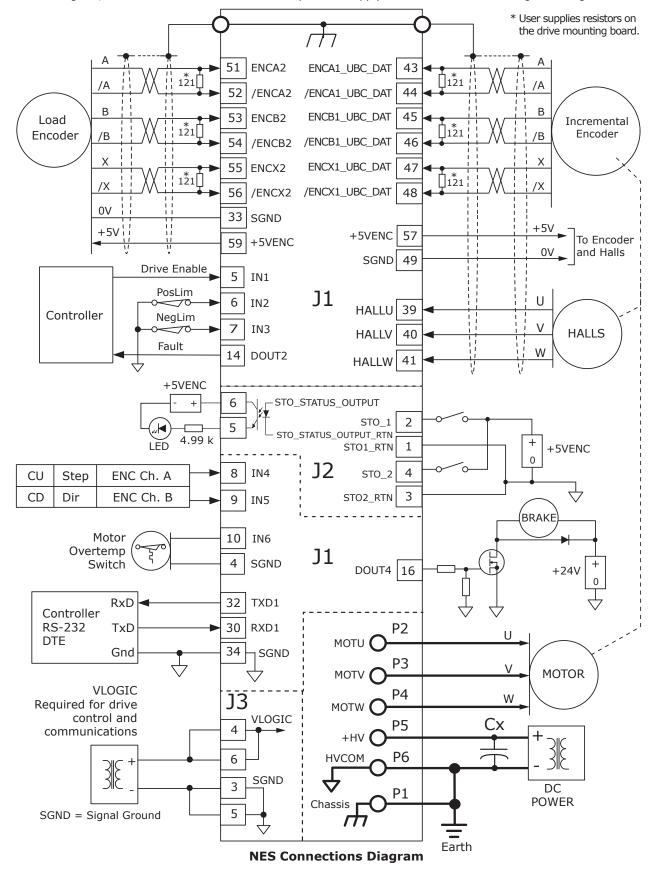
Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLogic +9~60. 24V power is recommended. If a 24V Brake is used, 24V is required. If common to HV, do not exceed 60V. Use REGEN protection, and diode isolation from HV.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 12 of 47

Tel: 781-828-8090

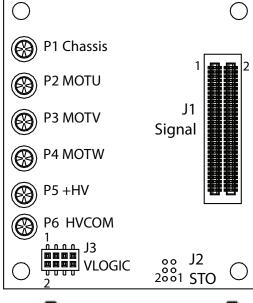
Fax: 781-828-6547

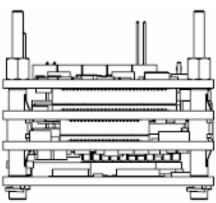

Page 13 of 47

NES TYPICAL CONNECTIONS

The following diagram shows the NES connections.

Note: In the diagram, the asterisk indicates the user is required to supply the resistors on the driving mounting PC board.





PC BOARD CONNECTIONS

The following diagrams and tables show the pins and signals located on the topside of the user mounting PC board.

Signal	Pin
Chassis	P1
Mot U	P2
Mot V	Р3
Mot W	P4
+HV	P5
HVCOM	P6

J2 STO Connector Diagram

J1 SIGNAL

JI SIGNAL	JI SIGNAL							
Signal	Pin		Signal					
REFIN1-	1	2	REFIN1+					
AGND	3	4	SGND					
[ENABLE] IN1	5	6	IN2					
IN3	7	8	IN4					
IN5	9	10	IN6					
SGND	11	12	SGND					
DOUT1	13	14	DOUT2					
DOUT3	15	16	DOUT4 [BRAKE]					
SGND	17	18	SGND					
+3.3V_TXRX1	19	20	[RX1+] RXPA					
+3.3V_TXRX2	21	22	[RX1-] RXNA					
[Tx2-] TXNB	23	24	[TX1+] TXPA					
[Tx2+] TXPB	25	26	[TX1-] TXNA					
[Rx2-] RXNB	27	28	SGND					
[Rx2+] RXPB	29	30	ASYNC_RXD1					
SGND	31	32	ASYNC_TXD1					
SGND	33	34	SGND					
ASYNC_RXD2	35	36	N.C.					
ASYNC_TXD2	37	38	N.C.					
HALLU	39	40	HALLV					
HALLW	41	42	+3.3V					
ENCA1_UBC_DAT	43	44	/ENCA1_UBC_DAT					
ENCB1	45	46	/ENCB1					
ENCX1_UBC_CLK	47	48	/ENCX1_UBC_CLK					
SGND	49	50	SGND					
ENCA2	51	52	/ENCA2					
ENCB2	53	54	/ENCB2					
ENCX2	55	56	/ENCX2					
+5VENC	57	58	+5V					
+5VENC	59	60	+3.3V					

Note: In the table, the term, N.C., refers to No Connection.

J3 VLOGIC

Name	Pin		Name
N.C.	2	1	N.C.
VLOGIC	4	3	HVCOM
VLOGIC	6	5	HVCOM
N.C.	8	7	N.C.

J2 STO CONNECTIONS

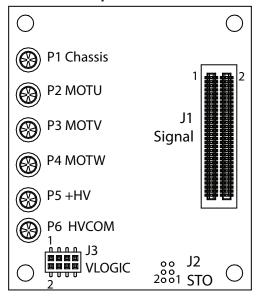
Name	Pin		Name		
STO_STATUS_OUTPUT	6	5	STO_STATUS_OUTPUT_RTN		
STO_2	4	3	STO2_RTN		
STO_1	2	1	STO1_RTN		

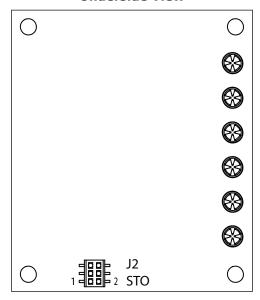
Note: The STO Connector J2 is mounted on the bottom side of the PCB.

ALL PIN NUMBERING INFORMATION FOR MODULE-LEVEL STO CONNECTIONS IN THIS DOCUMENT IS PIN NUMBERING CORRESPONDING TO THE BOTTOM ENTRY SOCKET (J2) ON THE USER MOUNTING BOARD. USER MOUNTING BOARDS MUST BE DESIGNED FOLLOWING THIS PIN NUMBERING CONVENTION.

Because the STO Header on the Nano module itself connects to the User Mounting Board via a bottom entry socket, the pin numbering for the header as marked on the Nano module is the mirror image of that for the bottom entry socket on the User Mounting Board.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 14 of 47





PC BOARD CONNECTORS

User Mounting Board Topside View

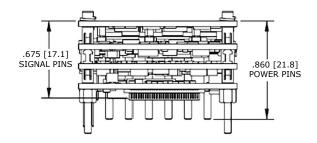
User Mounting Board Underside View

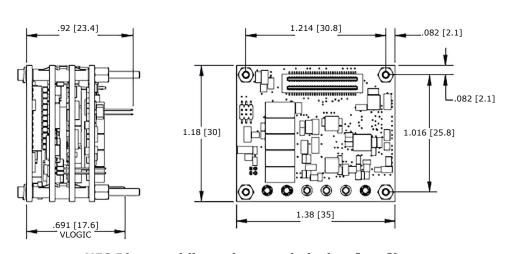
Ref Des	Label	Mfgr	Part Number *	Description	Qty
J1	Signal	WCON	3620-S060-022G3R02	Header, 60 pos, 0.5 mm pitch	1
J2	ST0	Samtec	CLM-103-02-L-D-BE	Header, 6 pos, 1 mm pitch	1
J3	VLOGIC	WCON	2521-204MG3CUNR1	Header, 8 pos, 1 mm pitch	1
P1∼P6	+HV, Motor	WINPIN	WP-WJ018G3R1	RCPTL Outer Sleeve Crown Spring	6

*Note: The Part Number column indicates the parts that require the purchase of reels for these components. Refer to the following vendor to contact for approved value-added partner Action Electronics.

Action Electronics, Inc. Walpole, MA 02081-2522-US Phone: (508) 668-5621

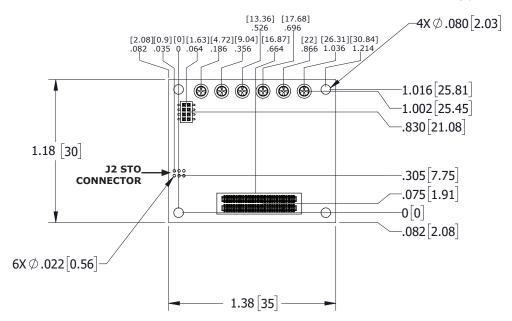
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 15 of 47





DIMENSIONS

The following diagram shows the NES dimensions.



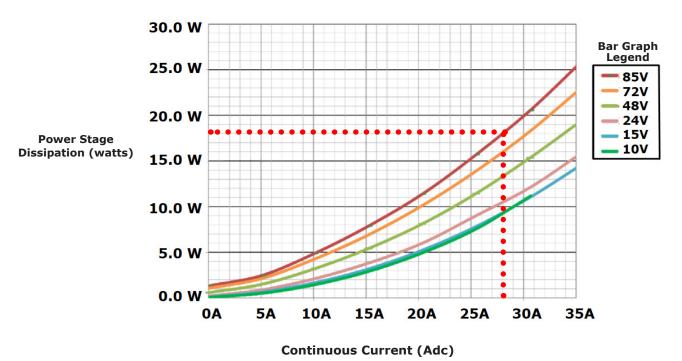
NES Diagram (dimensions are in inches [mm])

PC BOARD MOUNTING DIMENSIONS

The following diagram shows the topside view of the user mounting PC board for the drive. The STO J2 connector is mounted on the holes for the STO connector mating pins.

User Mounting Board Dimensions (Topside View) Diagram

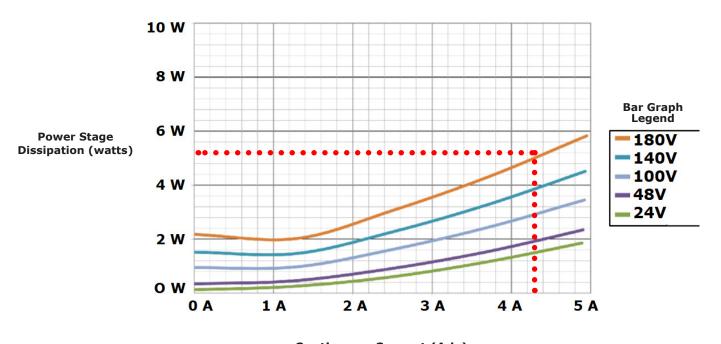
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 16 of 47



THERMALS: PWM OUTPUTS DISSIPATION

NES-090-70

The following chart shows the power dissipation in the drive when the PWM outputs are driving a motor. Adding the PWM dissipation to the VLogic dissipation will yield the total dissipation in Watts for the drive.


In the chart, the dotted lines show a dissipation of 18 W. at a continuous current of 28 Adc and +HV = 85 Vdc.

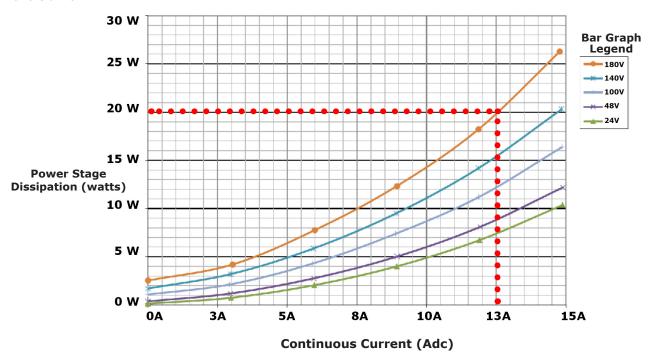
NES-180-10

The following chart shows the power dissipation in the drive when the PWM outputs are driving a motor. Adding the PWM dissipation to the VLogic dissipation will yield the total dissipation in Watts for the drive.

In the chart, the dotted lines show a dissipation of 5.2 W. at a continuous current of 4.4 Adc and +HV = 180 Vdc.

Continuous Current (Adc)

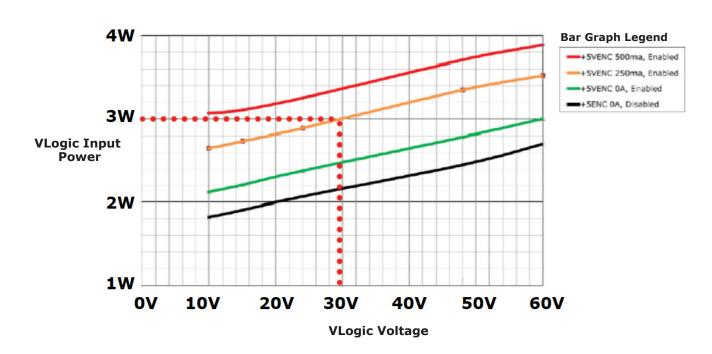
Tel: 781-828-8090 Fax: 781-828-6547 Page 17 of 47



THERMALS: PWM OUTPUTS DISSIPATION

NES-180-30

The following chart shows the power dissipation in the drive when the PWM outputs are driving a motor. Adding the PWM dissipation to the VLogic dissipation will yield the total dissipation in Watts for the drive.


In the chart, the dotted lines show a dissipation of 20 W. at a continuous current of 13 Adc and $\pm HV = 180 \text{ Vdc}$.

NES All Models

The following chart shows the power dissipation in the VLogic circuits that power the drive's control circuits and the external encoders. Adding the PWM dissipation to the VLogic dissipation will yield the total dissipation in Watts for the drive.

In the chart, the dotted lines show a dissipation of 3.0 W. at VLogic = 30 Vdc, when the drive is in an Enabled state and outputting 250 mA for an encoder.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 P/N 16-121736 Rev 14

Fax: 781-828-6547 Page 18 of 47

THERMAL RESISTANCE

In the Heatsink table, it shows the thermal resistance Rth in degrees-C per Watt (C/W) for typical cooling configurations. The drive has the standard "pins" heatsink mounted with a sheet of thermal material placed between the drive and the heatsink.

The acronym, LFM, is Linear Feet per Minute. LFM is defined as the velocity of air flow produced by a fan directed in line with the heatsink fins.

HEATSINK

LFM	0	100	200	300	400
Rth	5.3	3	2.5	1.6	1.3

FIND COOLING MEANS WITH DISSIPATION AND AMBIENT TEMPERATURE KNOWN

Given: Tamb = 32 $^{\circ}$ C (89.6 $^{\circ}$ F), PWM dissipation = 18 W, VLogic dissipation = 3 W

Tmax = 80 °C (drive shut-down temperature minus 10 °C for margin)

Find: Thermal Resistance Rth:

Delta-T = Tmax - Tamb = 80 - 32 = 48 °C

Total dissipation = 18 + 3 = 21 W

Rth = Delta-T / dissipation = °C / Watt = 48 / 21 = 2.3 °C/W

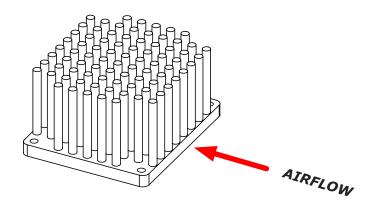
In the above table, there are two configurations that provide Rth less than 2.3 °C/W:

With heatsink, forced air at 300 or 400 LFM.

FIND MAX AMBIENT TEMP WHEN DRIVE CONFIGURATION IS KNOWN

Given: Heatsink, forced-air at 300 LFM, dissipation is 26.5 W

Rth = $1.6 \, ^{\circ}\text{C/W}$


Tmax = 80 °C (drive shut-down temperature)

Find: Max. ambient operating temperature

Delta-T = 26.5 W x 0.9 °C/W = 23.9 °C

Max. Tamb = Tmax - Delta-T = 80 - 23.9 = 56.1 °C

Max. ambient operating temperature is 45 °C so it can operate up to this temperature.

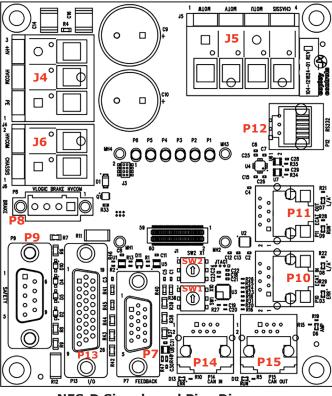
Airflow Direction

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 19 of 47

NES-D

Model	Ic	Ιp	VDC
NES-090-10-D	5	10	9~90
NES-090-70-D	35	70	9~90
NES-180-10-D	5	10	20~180
NES-180-30-D	15	30	20~180

J4 +HV


Signal	Pin
+HV	3
HVCOM	2
PE	1

J6 GROUNDS

Signal	Pin
HVCOM	2
Chassis	1

P8 BRAKE

Signal	Pin
24V_GND_IN	1
BRAKE	2
VLOGIC	3
VLOGIC	4

J5 MOTOR

Pin	Signal
1	MOTW
2	MOTV
3	MOTU
4	Chassis

P12 RS-232

Pin	Signal
6	N.C.
5	TxD
4	SGND
3	SGND
2	RxD
1	N.C.

P10 ECAT IN

Pin	Signal
8	Chassis
7	N.C.
6	RXNA [RX1-]
5	VDD33TXRX1
4	RXPA [RX1+]
3	TXNA [TX1-]
2	VDD33TXRX1
1	TXPA [TX1+]

P11 ECAT OUT

Pin	Signal		
8	Chassis		
7	N.C.		
6	RXNB [RX2-]		
5	VDD33TXRX2		
4	RXPB [RX2+]		
3	TXNB [TX2-]		
2	VDD33TXRX2		
1	TXPB [TX2+]		

NES-D Signals and Pins Diagram

P9 STO

Signal	Pin		Signal
Chassis	1	6	STO_STATUS_OUTPUT
STO1_24V_IN	2	7	STO_STATUS_OUTPUT_RTN
STO1_RTN	3	8	SGND
STO2_24V_IN	4	9	VLOGIC +24V
STO2_RTN	5		

P13 I/O & ENCODER 2

	-,		-			
Pin	Signal	Pin	Signal		Pin	Signal
1	Chassis	10	IN5		19	SGND
2	REFIN1-	11	N.C.		20	+5VENC
3	REFIN1+	12	N.C.		21	/ENCX2
4	IN1_24VTOL	13	N.C.		22	ENCX2
5	IN2_24VTOL	14	N.C.		23	/ENCB2
6	IN3_24VTOL	15	SGND		24	ENCB2
7	IN4	16	DOUT1		25	/ENCA2
8	N.C.	17	DOUT2		26	ENCA2
9	N.C.	18	DOUT3			_
				•		

P7 ENCODER 1

		_				
Pin	Signal	Pin	Signal		Pin	Signal
1	Chassis	6	HALLV		11	/ENCB1
2	+5VENC	7	/ENCX1_UBC_CLK		12	ENCB1
3	HALLU	8	ENCX1_UBC_CLK		13	/ENCA1_UBC_DAT
4	+5VENC	9	HALLW		14	ENCA1_UBC_DAT
5	SGND	10	OVERTEMP_IN		15	SGND

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 20 of 47

NES-D ETHERCAT CONNECTORS

ETHERCAT CONNECTORS

Dual RJ-45 connectors that accept standard Ethernet CAT-5 cables are provided for the EtherCAT connectivity.

D10 FCAT-TN

P10	ECAT-IN	_	P11 ECAT-OUT			
Pin	Signal		Pin	Signal		
1	TX1+		1	TX2+		
2	TX1-		2	TX2-		
3	RX1+		3	RX2+		
4	N.C.		4	N.C.		
5	N.C.		5	N.C.		
6	RX1-		6	RX2-		
7	N.C.		7	N.C.		
8	N.C.		8	N.C.		

*Note: In the Signal column, the asterisk indicates the corresponding pin connects to the R/C that is inside the ECAT connector.

Dual RJ-45 sockets accept standard Ethernet cables. The IN port connects to a master or connects to the OUT port of a device that is 'upstream' between the NES and the master.

NES-D P10, P11 NES J1 Magnetics EtherCAT TX1+ P10 RX1+ RX1-TX2+ P11 TX2-8 TxRx2 RX2+ /// Chassis

The OUT port connects to 'downstream' nodes. If the NES is the last node on a network, only the IN port is used. No terminator is required on the OUT port.

C board

RUN		ERR		
Green shows the EtherCAT State Machine:		Red shows error conditions:		
Off	= Init State	BLINKING	= Invalid Configuration	
BLINKING	= Pre-operational	SINGLE FLASH	= Unsolicited State Change	
SINGLE FLASH	= Safe-Operational	DOUBLE FLASH	= Application Watchdog	
ON	= Operational		Timeout	

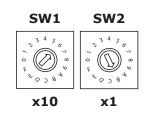
L/A (LINK/ACT)

Green indicates the state of the EtherCAT network.

LED	Link	Activity	Condition	
On	Yes	No	= Port Open	
FLICKERING	YES	YES	= Port Open with activity	
Off	No	(N/A)	= Port Closed	

EtherCAT DEVICE ID

In an EtherCAT network, slaves are automatically assigned fixed addresses based on their position on the bus. When a device requires a positive identification that is independent of cabling, a Device ID is needed. In the EZ board, the Device ID is assigned two, 16-position rotary switches with hexadecimal encoding. These switches can set the Device ID of the drive from $0x01\sim0xFF$ ($1\sim255$ decimal). In the table, the Decimel column includes the decimal values and the HEX column includes the corresponding hex settings for each switch (SW1 and SW2).


For Example 1: To find the switch settings for the Decimal Device ID 107, refer to the table to calculate the following:

1) In the table SW1 column, find the highest number that is less than 107, (96). Refer to the SW1 column and set SW1, (96) to the corresponding hex value that appears in the HEX column, (6)

96 < 107 and 112 > 107, so SW1 = 96 = Hex 6

2) Subtract 96 from the desired Device ID (107) to get the decimal value of switch SW2, (11). Refer to the SW2 column and set SW2, (11) to the corresponding hex value that appears in the HEX column, (B).

$$SW2 = (107 - 96) = 11 = Hex B$$

Tel: 781-828-8090

EtherCAT Device ID Switch Decimal Values

RUN

ERR

AMP

		SW1	SW2
	HEX	Dec	imel
	0	0	0
	1	16	1
	2	32	2
	3	48	3
	4	64	4
	5	80	5
1	6	96	6
	7	112	7
	8	128	8
	9	144	9
	Α	160	10
2	В	176	11
_	С	192	12
	D	208	13
	E	224	14
	F	240	15

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121736 Rev 14

Fax: 781-828-6547 Page 21 of 47

NES-D

AMP STATUS LED

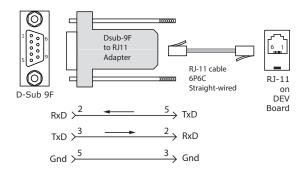
A bi-color AMP LED displays the state of the drive. Colors do not alternate, and can be solid On or ${\sf BLINKING}$.

If multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared, the next condition in the table will be shown.

LED	Condition Description	
RED/BLINKING	Latching fault. Operation can not resume until the drive is Reset.	
RED/SOLID	Transient fault condition. Drive can resume the operation when the condition causing the fault is removed.	
GREEN/SLOW-BLINKING	Drive OK but NOT-enabled. Can run when enabled.	
GREEN/FAST-BLINKING	Positive or Negative limit switch active. Drive can only move in the direction not inhibited by limit switch.	
GREEN/SOLID	Drive OK and enabled. Can run in response to reference inputs or EtherCAT commands.	

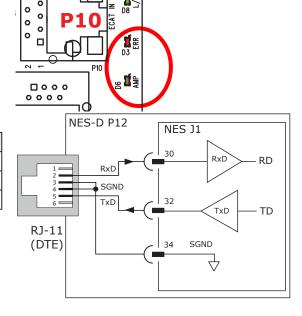
LATCHING FAULTS

Default	Optional (Programmable)	
Short Circuit (Internal or External)	Over-voltage	
Drive Over-Temperature	Under-voltage	
Motor Over-Temperature	Motor Phasing Error	
Feedback Error	Command Input Fault	
Following Error	Motor Wiring Disconnected	
	Over Current (Latched)	


RS-232 CONNECTION

The RS-232 port is used to configure the drive for stand-alone applications, or for configuration before it is installed into an EtherCAT network. Copley software communicates with the drive over this link and is then used for a complete drive setup. The EtherCAT Device ID that is set by the rotary switches can be monitored, and a Device ID programmed as well.

The RS-232 connector, P12, is a modular RJ-11 type that uses a 6-position plug, four wires of which are used for RS-232. A connector kit is available (SER-CK) that includes the modular cable, and an adapter to interface this cable with a 9-pin RS-232 port on a computer.


SER-CK SERIAL CABLE KIT

The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector P12 on the NES-D. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses a straight-through modular cable to connect to the NES. The connections are shown in the diagram below.

P12 DEV RS-232

Pin	Signal
2	RS232RX1 [RxD]
3,4	SGND
5	RS232TX1 [TxD]

SER-USB-RJ11

This device provides connectivity between a USB connector and the RJ-11 connector J9 on the DEV board.

Note: Use the Serial Interface Cable USB to RJ11 (SER-USB-RJ11) to plug-into either a customer-designed board with an RJ11 or a Copley NES drive with the NES-D. When you order either type of board, the Manufacturer recommends you order the Serial Interface Cable USB to RJ11 (SER-USB-RJ11).

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 22 of 47

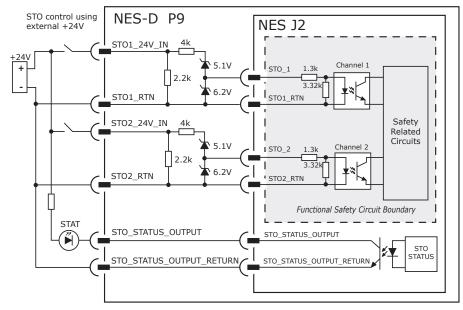
NES-D SAFE TORQUE OFF (STO)

DESCRIPTION

The following tables and diagrams show the use of external 24V to energize the STO inputs. Both STO inputs must be energized in order to enable the drive.

The hardware Enable input (IN1) is used with an immediate contact relay to bring the motor to a stop before a delayed contact relay deenergizes the STO inputs and prevents torque production in the motor.

STAT-OUT OPERATION


STO1	0	1	0	1
STO2	0	0	1	1
STAT	0	1	1	1

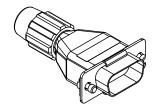
Note: In the STAT-OUT Operation table, the following describes each row.

- •STO1 & STO2 rows, 1=24V are applied between the IN-24V and RTN. 0=open-circuit.
- STAT row, 1=the optocoupler is On. 0=the optocoupler is OFF.
- STAT output is ON (True) when both STO1 & STO2 are energized, allowing the drive to be enabled and to produce torque.

P9 STO

Signal	Pin		Signal
Chassis	1	6	STO_STATUS_OUTPUT
STO1_24V_IN	2	7	STO_STATUS_ OUTPUT_RETURN
STO1_RTN	3	8	SGND
STO2_24V_IN	4	9	VLOGIC
STO2_RTN	5		

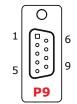
STO OPERATION

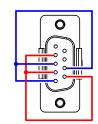

STO Input Voltage	STO State	
STO1_24V_IN AND STO2_24V_IN ≥ 15 Vdc	STO Inactive. Drive can be enabled to produce torque.	
STO1_24V_IN <i>OR</i> STO2_24V_IN < 5 Vdc	STO Active. Drive cannot be enabled to produce torque.	
STO1_24V_IN OR STO2_24V_IN OPEN		

Note: In the above table, voltages are referenced between an STOx_24V_IN and an STOx_RTN in P9. For example, V(STO1) = V(STO1_24V_IN) - V(STO1_RTN)

NES-D SAFE TORQUE OFF (STO) BYPASS

The Bypassing feature is used in conditions when you choose not to use the STO function. The STO-CK-04 has jumpers that use the VLogic to energize the STO inputs.


STO-CK-04

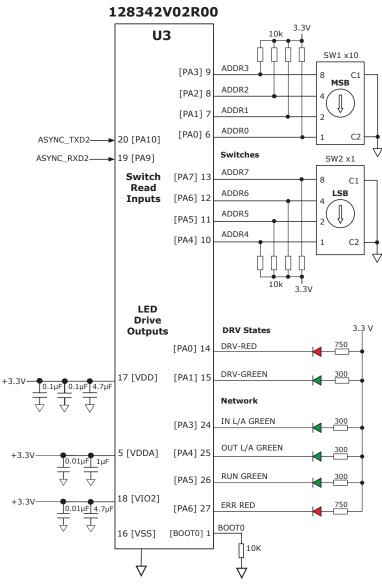


WIRING Diagram

In the diagram, the colored lines are as follows:

RED = (VLOGIC): 2,4,9BLUE = (SGND): 3,5,8

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 23 of 47



NES-D SWITCHES & LEDS

ETHERCAT DEVICE ID SWITCH CONNECTIONS & LEDS

The following diagram shows the connections to the EtherCAT Device ID switches and status LEDs.

The switches are read after the drive is reset or powered-On. When changing the settings of the switches, be sure to either reset the drive or power the drive OFF-ON.

NES-D Switches & LEDS Diagram

Ordering Information: U3

In the above diagram, U3 can be purchased through the Copley approved supplier, Arrow Electronics.

Contact Information: Arrow Electronics 4 Technology Drive Peabody, MA 01960 Phone: (978) 538-8500

Refer to the table below for more details.

Part Number	Supplier	Description	
128342V02R00	Arrow Electronics	Pre-programmed uC for Address Switch and LED	

Note: For information on the STM32F042G4U6TR electrical, pinout and package details, refer to the product: STM32F042G4U6TR Datasheet. The datasheet is posted on the ST Microelectronics™ website: https://www.st.com.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 24 of 47

NES-D +HV, MOTOR & VLOGIC CONNECTIONS

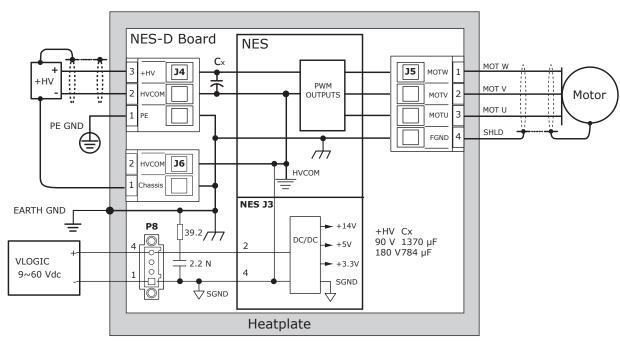
J4 + HV

The +HV power supply connects to J4 pins 2 and 3. In the diagram, the shield shown is optional and is primarily used for the reduction of RF emissions from the drive. As shown, it connects to the case of the power supply. Note that the minus terminal is not grounded externally. This is because currents in the cables produce voltage drops. Grounding the supply at the drive ensures that such voltage drops do not appear in the drive circuits.

J5 MOTOR

Pins 1~3 are used for the motor windings. Pin 4 is used for a cable shield. It connects to the drive heatplate on one end and should connect to the motor frame on the other end. This provides a return path for currents produced by the PWM outputs and the capacitance between the cable conductors, motor windings, and motor frame. While the frame is commonly grounded by mounting to equipment, without the shield connections, the PWM shield current could flow into external devices.

P8 VLOGIC


P8 powers the internal logic and control circuits in the drive. When the STO feature is used, it must be produced by power supplies with the transformer isolation from the mains and PELV or SELV ratings, and it produces a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLogic can be driven from a single power supply.

P8 is also used for the connection point for a motor holding brake. These connect to pins 2 and 3 and are not shown here, because it is not part of the power and motor connections.

GROUNDING

PE GND is a Protective Earth Ground which is the zero-volt reference for voltages used in the drive and is also the connection point for fault currents that might flow from any failures in the drive that could expose a user to an electric shock. Chassis is referenced to the drive heatplate and has no connections to any circuits in the drive.

Internal connections from the heatplate to J4, J5, and J6 enable cabling for grounding and shielding. HVCOM, High-Voltage-Common is the OV or 'ground' circuit for the high voltage circuits that drive the motor. SGND, Signal Ground is the OV circuit for low power control and interface circuits. It is connected to HVCOM internally so that all internal circuits have a common "OV" connection.

NES-D Connections Diagram

J4 +HV J6 GROUNDS

Pin	Signal	Pin	Signal
3	+HV	2	HVCOM
2	HVCOM	1	Chassis
1	Chassis		

P8 VLOGIC & BRAKE

Pin	Signal	
4	VLOGIC input	
3	VLOGIC to brake	
2	Brake	
1	HVCOM	

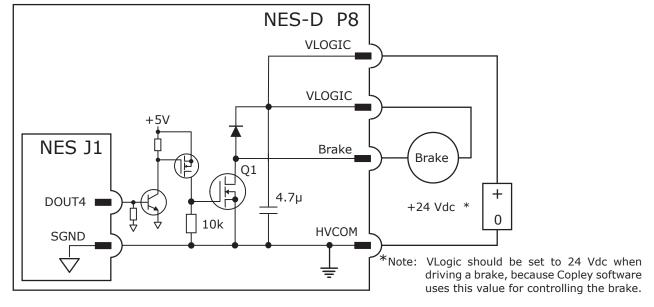
J5 MOTOR

Pin	Signal
1	MOTW
2	MOTV
3	MOTU
4	Chassis

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLogic $+9\sim60$. 24V power is recommended. If 24V Brake is used, 24V is required. If common to +HV, do not exceed 60V. Use REGEN protection, and diode isolation from HV.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 25 of 47



NES-D VLOGIC & BRAKE

The following diagram shows the brake circuit on the NES-D board that is MOSFET driven by the brake output OUT4 of the NES.

SPECIFICATIONS

Output	Data	Notes
Voltage Range	Max	+30 Vdc
Output Current	Ids	1.0 Adc

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
BRAKE	LO	Output MOSFET Q1 is OFF. Brake is un-powered and locks motor. Motor cannot move. Brake state is Active.
[OUT4]	HI	Output MOSFET Q1 is On. Brake is powered, releasing motor. Motor is free to move. Brake state is NOT-Active.

P8 BRAKE

Signal	Pins
Input VLOGIC	4
Brake VLOGIC	3
Brake	2
HVCOM	1

Copley Software Default Setting for Brake Output [OUT4] is "Brake - Active Low."

Active = Brake is holding motor shaft (i.e. the *Brake is Active*).

Motor cannot move.

No current flows in coil of brake.

Copley software I/O Line States shows [OUT4] as LO.

BRK Output voltage is HI (24V), MOSFET Q1 is Off.

Servo drive output current is zero.

Servo drive is disabled, PWM outputs are Off.

Inactive = Brake is not holding motor shaft (i.e. the Brake is NOT-Active).

Motor can move.

Current flows in coil of brake.

Copley software I/O Line States shows [OUT4] as HI.

BRK output voltage is LO (~0V), MOSFET Q1 is On.

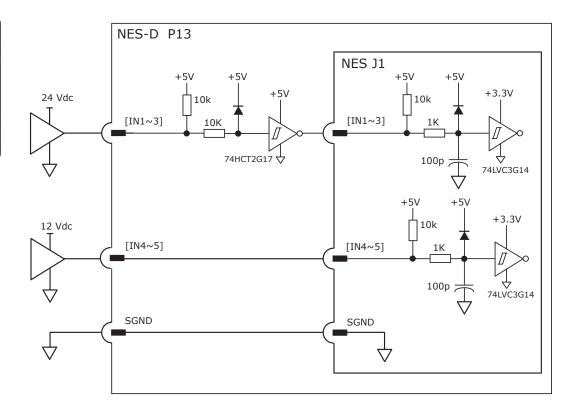
Servo drive is enabled, PWM outputs are On.

Servo drive output current is flowing.

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

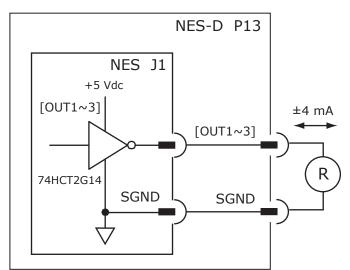
VLogic $+9\sim60$. 24V power is recommended. If the 24V Brake is used, 24V is required. If common to HV do not exceed 60V. Use REGEN protection and diode isolation from HV.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 26 of 47


NES-D INPUTS & OUTPUTS

Note: The following list the signal descriptions.

- IN1~3 on the NES-D are 24V compatible.
- IN4~5 are 12V tolerant.


P13 LOGIC INPUTS

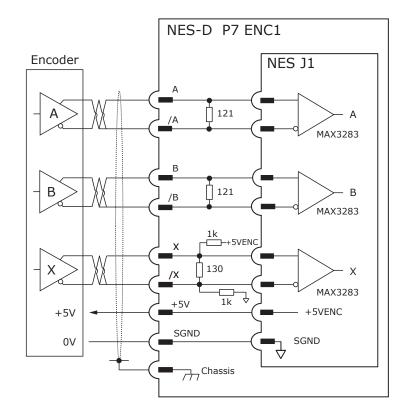
Signal	Pins	
IN1_24VTOL [IN1]	4	
IN2_24VTOL [IN2]	5	
IN3_24VTOL [IN3]	6	
IN4	7	
IN5	10	
SGND	15,19	

P13 LOGIC OUTPUTS

Signal	Pins
DOUT1 [OUT1]	16
DOUT2 [OUT2]	17
DOUT3 [OUT3]	18
SGND	15,19

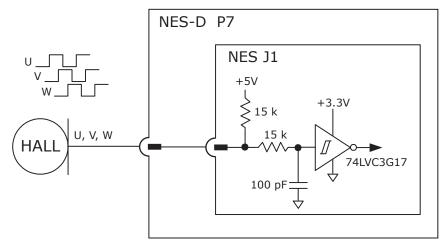
Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121736 Rev 14

Tel: 781-828-8090 Fax: 781-828-6547 Page 27 of 47



NES-D PRIMARY FEEDBACK ENCODER

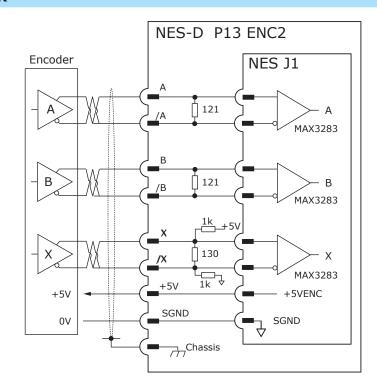
P7 ENC1 INPUTS


Signal	Pins
ENCA1_UBC_DAT [A]	14
/ENCA1_UBC_DAT [/A]	13
ENCB1 [B]	12
/ENCB1 [/B]	11
ENCX1_UBC_CLK [X]	8
/ENCX1_UBC_CLK [/X]	7
OVERTEMP_IN [IN6]	10
+5VENC	2,4
SGND	5,15
Chassis	1

Note: The term, ENC1, is the Motor encoder and should be used in single-encoder applications. In dual-encoder applications, it can be assigned as Primary or Secondary using Copley software.

P7 HALL INPUTS

Signal	Pins
HALLU	3
HALLV	6
HALLW	9
SGND	5,15



NES-D SECONDARY FEEDBACK ENCODER

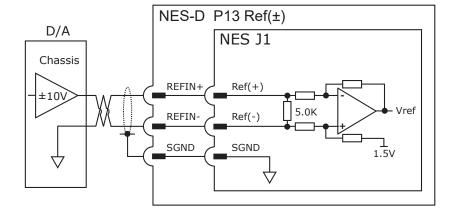
P13 ENC2 INPUTS

Signal	Pins
ENCA2 [A]	26
/ENCA2 [/A]	25
ENCB2 [B]	24
/ENCB2 [/B]	23
ENCX2 [X]	22
/ENCX2 [/X]	21
IN5 [Fault]	10
+5VENC	20
SGND	15,19
Chassis	1

Note: ENC2 is the Load Encoder. Typically, it provides feedback from a load driven by the motor, and it is used in dual-encoder applications. In dual-encoder applications, it can be assigned as Primary or Secondary using the Copley software.

NES-D ANALOG INPUT: AIN1

As a reference input, it takes Position/Velocity/Torque commands from a controller.


If it is not used as a command input, it can be used as a generalpurpose analog input.

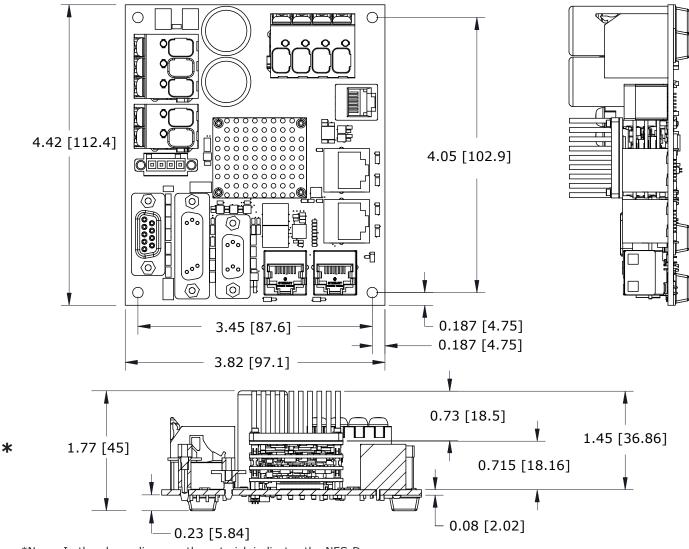
SPECIFICATIONS

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5 kΩ

P13 ENC2 INPUTS

Signal	P13 Pins
REFIN1+ [Ref(+)]	3
REFIN1- [Ref(-)]	2
SGND	15,19

Tel: 781-828-8090



NES-D DIMENSIONS

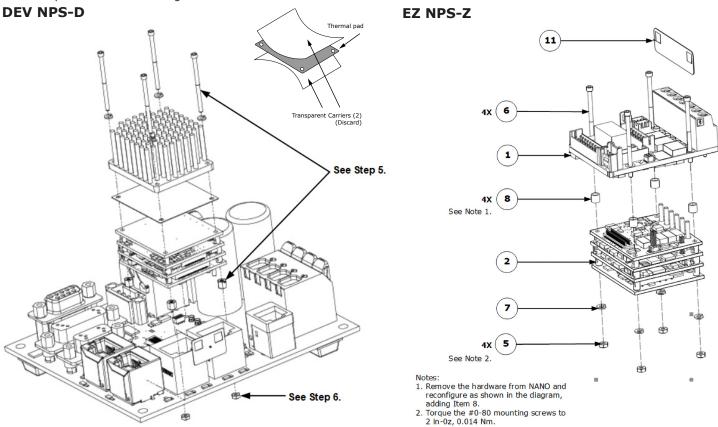
The following diagram shows the NES-D dimensions.

*Note: In the above diagram, the asterisk indicates the NES-D height is the same height with or without the heatsink.

NES-D Dimensions Diagram

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121736 Rev 14

Tel: 781-828-8090 Fax: 781-828-6547 Page 30 of 47



NES-D HEATSINK INSTALLTION

A thermal pad is used in place of heatsink grease. The pad is die-cut to shape and has holes for the heat sink mounting screws. There are two protective sheets, blue on one side and clear on the other side. Remove both sheets when the interface pad is installed.

- 1. Remove the blue protective sheet from one side of the pad.
- 2. Place the interface pad on the drive, be sure to center the pad holes over the heatplate mounting holes.
- 3. Remove the clear protective sheet from the pad.
- 4. Mount the heatsink onto the drive. Make sure the holes in the heatsink, interface pad, and drive are aligned.
- 5. Torque the _#0-80 mounting screws to 2 in-oz, 0.014 Nm.
- 6. Torque the #0-80 retaining nuts to 8 in-oz.

NES-D Board, Heatsink Mounting Diagram

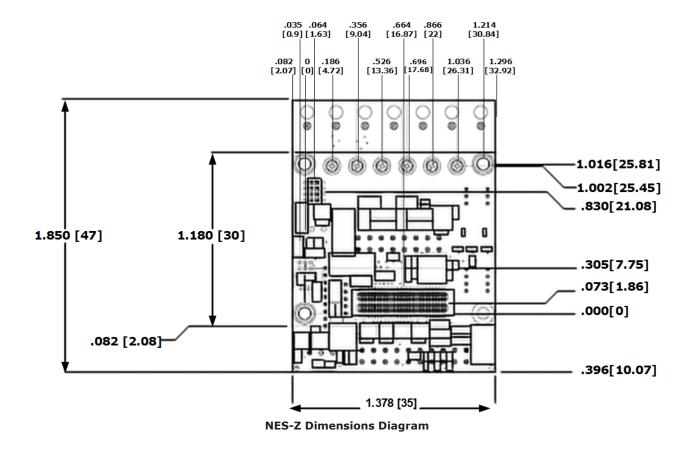
NES-Z Board, Heatsink Installation Diagram

N-HK Heatsink Kit

Item	Description	Quantity
1	Screw, #0-80, hex, socket cap screw, 1 in [25.4 mm], stainless steel	4
2	Heatsink, 0.728 [18.49] tall, pins	1
3	Thermal pad	1
4	Spacer, hex, 0.125 in [3.18 mm], 0-80 UNC 2B thread, 0.120 in [3.05 mm] tall, AL	4
5	Washer, medium split lock, #0, 18-8, stainless steel	4
6	Nut, #0-80, fine thread, stainless steel	4
7	IFixit Opening Tool	1

Note: The NES-090-70-D and NES-180-30-D are shipped from the factory with the Heatsink included.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 31 of 47



NES-Z DIMENSIONS

The following diagram shows the NES-Z dimensions in inches and mm.

Fax: 781-828-6547 Page 32 of 47

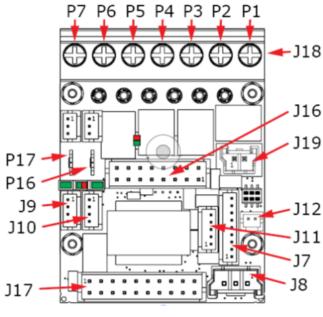
Tel: 781-828-8090

NES-Z BOARD

The NES-Z Signals and Pins diagram and tables identify the jumpers, signals and pins on the NES-Z board.

Models

NES-090-70-Z	
NES-180-30-Z	
NES-180-10-Z	
NES-090-10-Z	


J9 ECAT J10 ECAT

IN	Pin	ОИТ	Pin
RX1+	1	RX2+	1
RX1-	2	RX2-	2
TX1+	3	TX2+	3
TX1-	4	TX2-	4

P17 SHIELD

Signal	Pin
SHLD	1

P16 SHIELD		
Signal Pin		
SHLD	1	

NES-Z Signals and Pins Diagram

J18

Pin	Signal
1	PE
2	HVCOM
3	+HV
4	MOTW
5	MOTV
6	MOTU
7	Chassis

J19 VLOGIC

Signal	Pin
HVCOM	1
VLOGIC	2

J12 BRAKE

Signal	Pin
VLOGIC	2
BRAKE	1

J17 I/O

Signal	PIN		Signal
/ENCA2	2	1	REFIN1-
ENCA2	4	3	REFIN1+
IN1_24VTOL	6	5	/ENCX2
IN2_24VTOL	8	7	ENCX2
IN3_24V_TOL	10	9	+5VENC
DOUT1	12	11	SGND
DOUT2	14	13	/ENCB2
DOUT3	16	15	ENCB2
IN4	18	17	SGND
IN5	20	19	Chassis

J16 STO

Signal	PIN		Signal
STO1_24V_IN	2	1	STO1_RTN
STO_1	4	3	STO1_RTN
N.C.	6	5	N.C.
STO2_24V_IN	8	7	STO2_RTN
STO_2	10	9	STO2_RTN
N.C.	12	11	N.C.
STO_STATUS_ OUTPUT_RTN	14	13	SGND
+5V	16	15	STO_STATUS_ OUTPUT

J11 HALLS

Signal	Pin
HALLU	5
HALLV	4
HALLW	3
+5VENC	2
SGND	1

J7 ENCODER 1

Signal	Pin
OVERTEMP_IN	9
ENCX1_UBC_CLK	8
/ENCX1_UBC_CLK	7
ENCB1	6
/ENCB1	5
ENCA1_UBC_DAT	4
/ENCA1_UBC_DAT	3
+5VENC	2
SGND	1

J8 RS-232

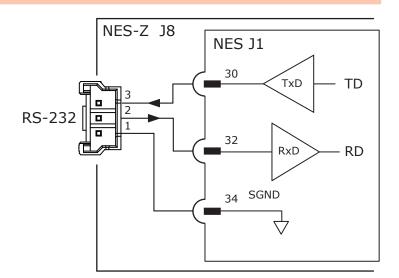
Signal	Pin
RX232TX1	3
RS232RX1	2
SGND	1

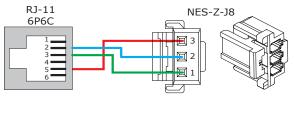
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 33 of 47

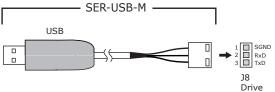
NES-Z: RS-232

RS-232 CONNECTION

The RS-232 port is used to configure the drive for stand-alone applications, or it is used for a configuration before it is installed into an EtherCAT network. Copley software communicates with the drive over this link and it is then used for the complete drive setup. The EtherCAT Device ID is set via RS-232 along with other operating functions.

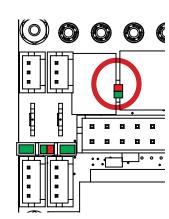

J8 RS-232


Signal	Pin
RX232TX1	3
RS232RX1	2
SGND	1


Compatibility with the existing serial adapter cables can be done using an RJ-11 socket (6P6C) wired as shown in the diagram.

Molex: 42410-6170 Modular Jack, 6 terminals, size 6

Copley will offers an SER-USB-M serial port adapter. This serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 230,400. The SER-USB-M cable has output levels that are compatible with NES-Z serial port.



NES-Z: AMP STATUS LED

DRIVE STATUS LED (AMP)

A bi-color LED displays the state of the drive. Colors do not alternate, and can be solid On or BLINKING. If multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared, the next condition in the table will be shown.

LED	Condition Description
RED/BLINKING	Latching fault. Operation cannot resume until the drive is Reset.
RED/SOLID	Transient fault condition. Drive can resume the operation when the condition causing the fault is removed.
GREEN/SLOW-BLINKING	Drive OK but NOT-enabled. Can run when enabled.
GREEN/FAST-BLINKING	Positive or Negative limit switch active. Drive can only move in the direction not inhibited by limit switch.
GREEN/SOLID	Drive OK and enabled. Can run in response to reference inputs or EtherCAT commands.

LATCHING FAULTS

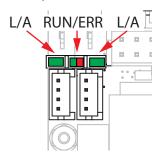
Default	Optional (Programmable)
Short circuit (Internal or External)	Over-voltage
Drive over-temperature	Under-voltage
Motor over-temperature	Motor Phasing Error
Feedback Error	Command Input Lost
Following Error	Motor Wiring Disconnected
STO Active	Over Current (latched)

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 34 of 47

NES-Z: J9~J10 ETHERCAT COMMUNICATIONS

EtherCAT is the open, real-time Ethernet network developed by Beckhoff based on the widely used 100BASE-TX cabling system. EtherCAT enables high-speed control of multiple axes while maintaining tight synchronization of clocks in the nodes.

ETHERCAT CONNECTIONS


J9 & J10 accept the Ethernet cables. The IN port connects to a master, or connects to the OUT port of a device that is 'upstream', between the Nano and the master.

Data protocol is CANopen application protocol over EtherCAT (CoE) based on DSP-402 for motion control devices. More information on EtherCAT can be found on this web-site: http://ethercat.org/default.htm

The OUT port connects to 'downstream' nodes. If the drive is the last node on a network, only the IN port is used. No terminator is required on the OUT port.

ETHERCAT LEDS

RUN Green shows the state of the ESM (EtherCAT State Machine).		 ERR M Red shows errors such as watchdog timeouts and an unsolicited st change in the drive due to local errors. 	
LED	Condition	LED Condition	
Off	= Init	Off	= EtherCAT communications are working correctly
BLINKING	= Pre-operational	BLINKING	= Invalid Configuration, general configuration error
SINGLE FLASH	= Safe-Operational	SINGLE FLASH	= Local error, slave has changed EtherCAT state autonomously
ON	= Operational	Double Flash	= PDO or EtherCAT watchdog timeout, or an application watchdog timeout has occurred.

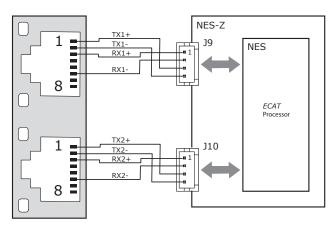
L/A

A green LED indicates the state of the EtherCAT network.

LED	Link	Activity	Condition
On	Yes	No	= Port Open
FLICKERING	YES	YES	= Port Open with activity
OFF	No	(N/A)	= Port Closed

ETHERCAT DEVICE ID

In an EtherCAT network, slaves are automatically assigned fixed addresses based on their position on the bus. Stations on EtherCAT are automatically addressed by their bus location. The first drive on the network is station address -1. The second drive on the network is station address -2, and so on.


When a device must have a positive identification that is independent of cabling, a Device ID is required. This Device ID can be set using digital inputs or set with a programmed value. Use the Copley software to configure both of these modes.

ETHERCAT CONNECTORS

For user PC boards that use the standard RJ-45 receptacle for their network connections, the diagram below shows the connections to the EZ board connectors.

RJ-45

Signal	Pins
TX1+	1
TX1-	2
RX1+	3
N.C.	4
N.C.	5
RX1-	6
N.C.	7
N.C.	8

110 FCAT-OUT

J9 ECAT-IN

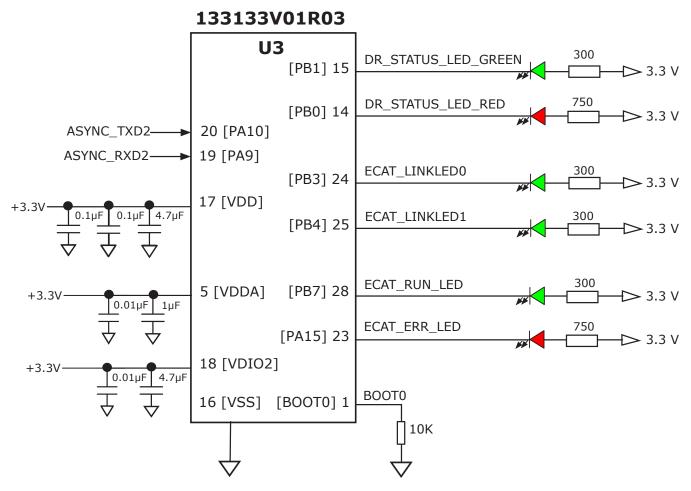
,, <u> </u>			J	U/11 UU1
Pin	Signal		Pin	Signal
1	RX1+		1	RX2+
2	RX1-		2	RX2-
3	TX1+		3	TX2+
4	TX1-		4	TX2-

P17 P16 P16 OUT

Tel: 781-828-8090

Note: In the above diagram, P16 & P17 are used for the shields in the J9 and J10 EtherCAT cables.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121736 Rev 14



NES-Z: DRIVE AND NETWORK STATUS LEDS

The following diagram shows the NES-Z drive and network status LEDS. The NES-Z status LEDs descriptions are listed below.

- The "STM" chip uses the serial data from ASYNC_TXD2 to drive LEDs.
- DR STATUS LED X signals drive the AMP STATUS LED (refer to the detail on page 2).
- ECAT/CAN XXX LED show the network status of the drive communication.
- ECAT LINKLEDx signals show the presence of activity on the ECAT connections.

NES-Z Switches & LEDs Diagram

Ordering Information: U3

In the above diagram, U3 can be purchased through the Copley approved supplier, Arrow Electronics.

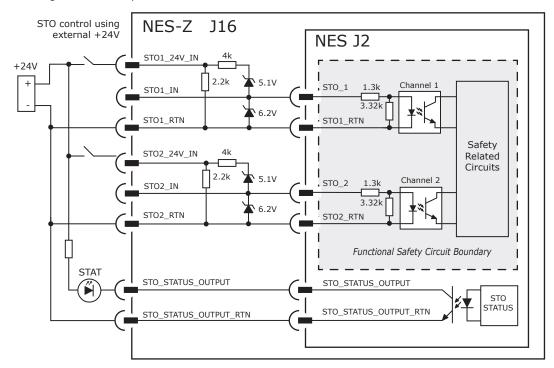
Contact Information: Arrow Electronics 4 Technology Drive Peabody, MA 01960 Phone: (978) 538-8500

Refer to the table below for more details.

Part Number	Supplier	Description
133133V01R03	Arrow Electronics	Pre-programmed uC for Address Switch and LED

Note: For information on the STM32F042G4U6TR electrical, pinout and package details, refer to the product: STM32F042G4U6TR Datasheet. The datasheet is posted on the ST Microelectronics website: https://www.st.com.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 36 of 47



NES-Z: J16 SAFE TORQUE OFF [STO]

DESCRIPTION

The following diagram shows the configuration to use for the external 24V to energize the STO inputs.

Both STO inputs must be energized in order to enable the drive.

NES-Z J16 (STO) Diagram

Note: In the diagram, it shows the +24V can be driven from the VLogic power supply.

- The STOx_24V_IN circuits can tolerate the +60V limit of the VLogic input.
- The STO_x maximum voltage limit is +7.0 Vdc.

STO_STATUS_OUTPUT

STO1	0	1	0	1
STO2	0	0	1	1
STAT	0	1	1	1

Note: In the STO Status Output table, the following describes each row.

- •STO1 & STO2 rows, 1=24V are applied between the IN-24V and RTN. 0=open-circuit.
- •STAT row, 1=the optocoupler is O_N. 0=the optocoupler is Off.
- •STAT output is On (True) when both STO1 & STO2 are energized, allowing the drive to be enabled and to produce torque.

J16 STO

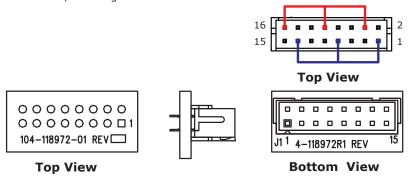
Signal	Pin		Signal
STO1_RTN	1	2	STO1_24V_IN
STO1_RTN	3	4	STO_1
N.C.	5	6	N.C.
STO2_RTN	7	8	STO2_24V_IN
STO2_RTN	9	10	STO_2
N.C.	11	12	N.C.
SGND	13	14	STO_STATUS_OUTPUT_RTN
STO_STATUS_OUTPUT	15	16	+5V

STO OPERATION

STO Input Voltage	STO State
STO1_24V_IN <i>AND</i> STO2_24V_IN ≥ 15 Vdc	STO Inactive. Drive can be enabled to produce torque.
STO_1 <i>AND</i> STO_2 ≥ 3.0 Vdc	310 Inactive. Drive can be enabled to produce torque.
STO1_24V_IN <i>OR</i> STO2_24V_IN < 5 Vdc	
STO_1 <i>OR</i> STO_2 ≤ 0.8 Vdc	STO Active. Drive cannot be enabled to produce torque.
STO_1 OR STO_2 OPEN	

Note: In the above table, the voltages are referenced between an STO_x and an STOx_RTN in J16. For example, $V(STO1) = V(STO1_24V_IN) - V(STO1_RTN)$

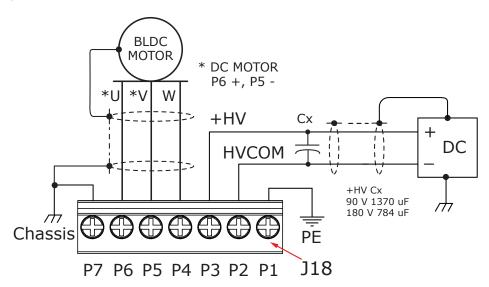
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 37 of 47



NES-Z: J16 SAFE TORQUE OFF (STO) BYPASS

Bypassing is used for users who do not use the STO function. The NS-Z-STO has jumpers that use the VLogic to energize the STO inputs. This disables the STO function, allowing the drive to be

enabled from hardware inputs or a network. The graphic shows the wiring of the NS-Z-STO.


NES-Z: J18 + HV & MOTOR CONNECTIONS

J18 +HV: P2, P3

The +HV power supply connects to J18 pins P2 and P3. In the following diagram, the shield shown is optional and it is primarily used for the reduction of the RF emissions coming from the drive. As shown, it connects to the case of the power supply. Note that the minus terminal is not grounded externally. This is because currents in the cables produce voltage drops. Grounding the supply at the drive ensures that such voltage drops do not appear in the drive circuits. Bulk capacitance Cx is required from +HV to HVCOM as shown. Cx must be adjacent to the EZ board.

J18 MOTOR: P4~P7

Use Pins P4~P6 for the motor windings. Pin P7 is used for the cable shield. It connects to Chassis on one end and should connect to the motor frame on the other end. This connection provides a return path for currents produced by the PWM outputs and the capacitance between the cable conductors, motor windings, and motor frame. While the frame is commonly grounded by mounting to the equipment, without the shield connections, the PWM shield current could flow into external devices.

J18	
Pin	Signal
P1	PE
P2	HVCOM
Р3	+HV
P4	MOTW
P5	MOTV
P6	MOTU
P7	Chassis

*Note: In the diagram, the asterisk indicates the DC brush motors connect to P6 & P5.

Motor Connections Diagram

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLogic $+9\sim60$. 24V power is recommended. If the 24V Brake is used, 24V is required. If common to HV, do not exceed 60V. Use REGEN protection, and diode isolation from HV.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 38 of 47

NES-Z: J12 BRAKE

J12 BRAKE:

The EZ board has components that can actuate a brake when controlled by DOUT4. If it is not used for the brake, DOUT4 is programmable for other functions.

Use the Copley software to set the custom brake configuration. This configuration includes settings for VLogic, Initial Voltage, Time at Initial Voltage, Holding Voltage, and PWM Period.

SPECIFICATIONS

Input	Data	Notes
Voltage Range	Max	+6~60 Vdc
Output Current	Ids	1.0 Adc

J12 BRAKE

Pin	Signal
2	VLOGIC
1	BRAKE

Copley Software Default Setting for Brake Output [OUT4] is "Brake - Active Low."

Active = Brake is holding motor shaft (i.e. the *Brake is Active*). Motor cannot move.

No current flows in coil of brake.

Copley software I/O Line States shows [OUT4] as LO. BRK Output voltage is HI (24V), MOSFET Q1 is OFF.

Servo drive output current is zero.

Servo drive is disabled, PWM outputs are Off.

Inactive = Brake is not holding motor shaft (i.e. the Brake is NOT-Active).

Motor can move

Current flows in coil of brake.

Copley software I/O Line States shows [OUT4] as HI.

BRK output voltage is LO (~0V), MOSFET Q1 is On.

Servo drive is enabled, PWM outputs are On.

Servo drive output current is flowing.

NES-Z J12 **VLOGIC** VLOGIC **Brake NES 11 BRAKE** Q1 4.7μ DOUT4 SGND **HVCOM**

HI/LO DEFINITIONS: OUTPUTS

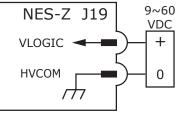
Input	State	Condition
BRAKE	LO	Output MOSFET Q1 is OFF. Brake is un-powered and locks motor. Motor cannot move. Brake state is Active.
[DOUT4]	НІ	Output MOSFET Q1 is On. Brake is powered, releasing motor. Motor is free to move. Brake state is NOT-Active.

NES-Z: J19 VLOGIC

J19 VLOGIC:

The J19 VLogic powers the internal logic and control circuits in the drive. When the STO feature is used, it must be produced by power supplies with the transformer isolation from the mains, PELV or

SELV ratings, and produce a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLogic can be driven from a single power supply.


SPECIFICATIONS

Input	Data	Notes
Voltage Range	Max	+6~60 Vdc
Immut Davies	Тур	4 W
Input Power	Max	8 W

Note: The typical input power is no load on encoder +5V. The maximum input power is with two encoders

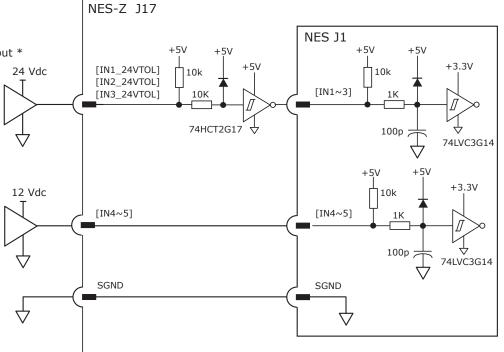
@ 250 mA each, and +5V at maximum.

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLogic +9~60. 24V power is recommended. If the 24V Brake is used, 24V is required. If common to +HV, do not exceed 60V. Use REGEN protection, and diode isolation from HV.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 39 of 47

NES-Z: J17 INPUTS & OUTPUTS


J17 has the following connections:

- Digital inputs 1~5
- Digital outputs 1~3
- Analog differential input *
- Secondary Quad A/B/X Encoder Input *
- * See page 39

Note: IN1~3 are 24V compatible. IN4~5 are 12V tolerant.

J17 LOGIC INPUTS

Signal	Pins
IN1_24VTOL	6
IN2_24VTOL	8
IN3_24VTOL	10
IN4	18
IN5	20
SGND	11,17



J17 LOGIC OUTPUTS

Signal	Pins
DOUT1 [OUT1]	12
DOUT2 [OUT2]	14
DOUT3 [OUT3]	16
SGND	11,17

J17 I/O

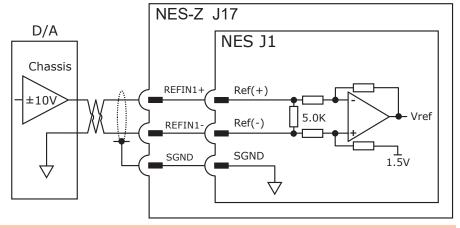
Signal	Pi	ns	Signal
/ENCA2	2	1	REFIN-
ENCA2	4	3	REFIN+
IN1_24VTOL	6	5	/ENCX2
IN2_24VTOL	8	7	ENCX2
IN3_24VTOL	10	9	+5VENC
DOUT1	12	11	SGND
DOUT2	14	13	/ENCB2
DOUT3	16	15	ENCB2
IN4	18	17	SGND
IN5	20	19	Chassis

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121736 Rev 14

Fax: 781-828-6547 Page 40 of 47

NES-Z: J17 ANALOG INPUT

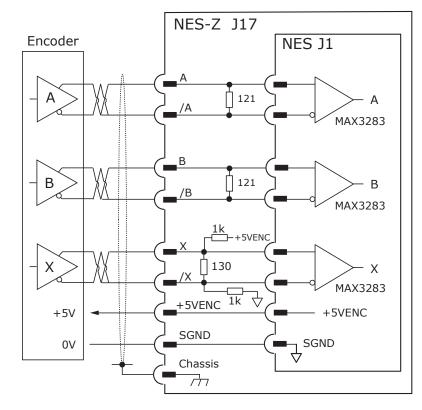

As a reference input, it takes Position/Velocity/Torque commands from a controller.

If it is not used as a command input, it can be used as generalpurpose analog input.

SPECIFICATIONS

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.0 kΩ

Signal	J17 Pins
Ref(+)	3
Ref(-)	1



NES-Z: J17 SECONDARY ENCODER

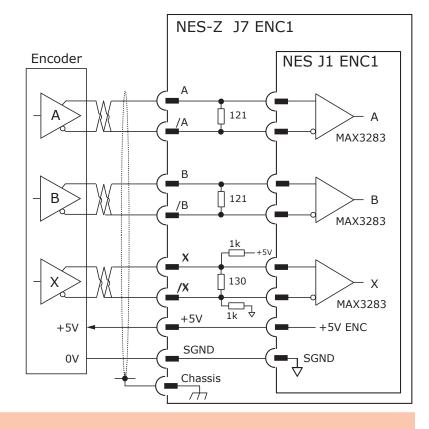
The secondary encoder is used when the load is not connected directly to the motor.

J17 ENC2 INPUTS

Signal	Pins
ENCA2 [A]	4
/ENCA2 [/A]	2
ENCB2 [B]	15
/ENCB2 [/B]	13
ENCX2 [X]	7
/ENCX2 [/X]	5
+5VENC	9
SGND	11,17
Chassis	19

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121736 Rev 14

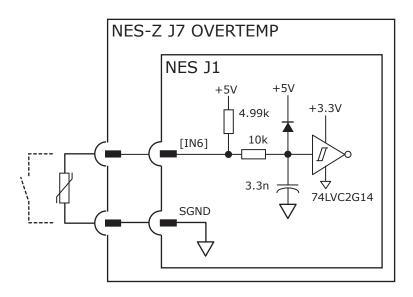
Tel: 781-828-8090 Fax: 781-828-6547 Page 41 of 47


NES-Z: J7 PRIMARY ENCODER

The ENC1 is the Motor encoder and should be used in singleencoder applications.

In dual-encoder applications, it can be assigned as Primary or Secondary using the Copley software.

J7 ENC1 INPUTS

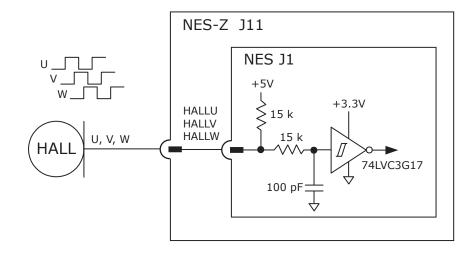

Signal	Pins
ENCA1_UBC_DAT [A]	4
/ENCA1_UBC_DAT [/A]	3
ENCB1 [B]	6
/ENCB1 [/B]	5
ENCX1_UBC_CLK [X]	8
/ENCX1_UBC_CLK [/X]	7
OVERTEMP_IN [IN6]	9
+5VENC	2
SGND	1

NES-Z: J7 OVERTEMP

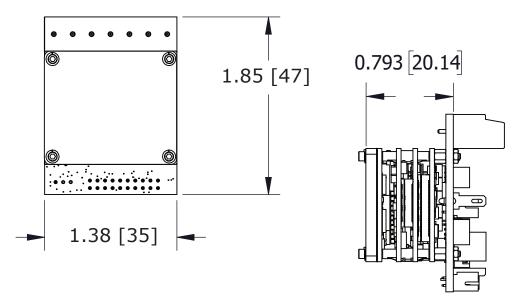
The Input IN6 has a 49 microsecond rise time RC filter with a 4.99 $k\Omega$ pullup resistor to +5 VDC. Input IN6 is designed to interface with an industry standard PTC Thermistor: IAW BS 49990111(1987) which is the standard for the built-in thermal protection of the motor as a default.

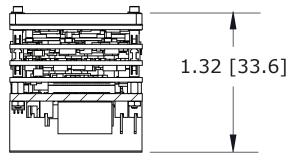
If it is not used for the Motemp function, the IN6 can be reprogrammed for other input functions.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 42 of 47



NES-Z: J11 HALLS


J11 HALL INPUTS


Signal	Pins
Hall U	5
Hall V	4
Hall W	3
+5VENC	2
SGND	1

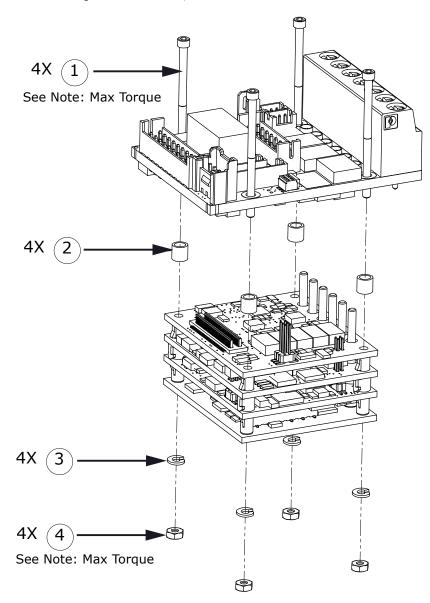
NES-Z: MECHANICALS

The following diagram shows the NES-Z dimensions.

NES-Z Dimensions Diagram

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121736 Rev 14

Tel: 781-828-8090 Fax: 781-828-6547 Page 43 of 47


NES-Z: MECHANICALS

In the NES-Z Components diagram, it shows the location of the parts in the drive when it is shipped. Use screw lengths of 1'' [25.4 mm] to connect the nuts and washers and secure the parts together.

When the user secures the nuts to the underside of the board to mount the board to the panel, add the nuts' (depth or width) to this number to calculate the minimum length of screws required. For a panel with tapped holes, the $1''[25.4\,\mathrm{mm}]$ screw should be sufficient.

Note: Max. Torque:

The maximum torque of the #080 mounting screws is 2 in-oz, .014Nm.

NES-Z Components Diagram

Item	Qty	Description	Mfgr, Part Number
1	4	Screw, 1", hex, 0-80, 18-8 THD, 80-1 SS	Fastenal: 0171020
2	4	Spacer, 3.2MM-OD 2.3MM-ID 3MM-LG SS	Bossard: 6503824
3	4	Washer, split, 0.062 ID, 18-8, 0.137" O.D. SS	Fastenal: 017926
4	4	Nut, 0-80, 1/8", hex, socket, cap 18-8 SS	Fastenal: 0173909

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 44 of 47

ORDERING GUIDE

NANO

Part Number	Description
NES-090-10	Nano Micro Module EtherCAT NES servo drive, 5/10 A, 90 Vdc
NES-090-70	Nano Micro Module EtherCAT NES servo drive, 35/70 A, 90 Vdc
NES-180-10	Nano Micro Module EtherCAT NES servo drive, 5/10 A, 180 Vdc
NES-180-30	Nano Micro Module EtherCAT NES servo drive, 15/30 A, 180 Vdc
NES-090-10-D	Nano Micro Module EtherCAT NES with DEV board, not soldered, no heat sink
NES-090-70-D	Nano Micro Module EtherCAT NES with DEV board, soldered , with heat sink
NES-180-10-D	Nano Micro Module EtherCAT NES with DEV board, not soldered, no heat sink
NES-180-30-D	Nano Micro Module EtherCAT NES with DEV board, not soldered, with heat sink
NES-090-10-Z	Nano Micro Module EtherCAT NES with EZ board, not soldered, no heat sink
NES-090-70-Z	Nano Micro Module EtherCAT NES with EZ board, soldered , no heat sink
NES-180-10-Z	Nano Micro Module EtherCAT NES with EZ board, not soldered, no heat sink
NES-180-30-Z	Nano Micro Module EtherCAT NES with EZ board, not soldered, no heat sink

ACCESSORIES FOR NES

Part Numb	er Description	
N-HK	Heatsink Kit	

ACCESSORIES FOR NES-D

Part Number	Description		
NS-D-CK	NES-D Connector Kit		
STO-CK-04	NES-D Bypass Jumper		
N-HK	Heatsink Kit		
SER-USB-RJ11	USB to 6-pin Modular Adapter		

CONNECTOR KIT FOR NES-D

Model	Qty	Ref	Name	Description	MFGR Part Number
	1	P8	VLogic and Brake	Connector, terminal-block, 4-pole, 3.5 mm	Wago: 734-104/107-000
	1	1 18		Tool, for P8	Wago: 734-231
	2	P7,P9	I/O	Connector Cover, D-Sub, 9-pin	3M: 3357-9209
NS-D-CK	1	P9	Safety	Connector, D-Sub, 9-position, size 1	TE: 205204-4
Connector Kit	9	P9	Safety	Contact, pin, crimp, snap-in, 24~20 AWG	TE: 66506-9
	1	P7	I/O	Connector Cover, D-Sub, 15-pin	3M: 3357-9215
	1	P7	Feedback	Connector, D-Sub, 15-pin (HD), male, solder cup	Norcomp: 180-015-103L001
	1	P13	I/O	Connector, D-sub, 26-pin (HD), male, solder cup	Norcomp: 180-026-103L001

Fax: 781-828-6547 Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 P/N 16-121736 Rev 14 Page 45 of 47

ORDERING GUIDE

ACCESSORIES FOR NANO MICRO MODULE NES-Z

Part Number	Description			
NS-Z-CK	NES-Z Connector Kit			
N-HK Heat Sink Kit				
SER-USB-M USB to 3-Pin Molex Adapter Cable				

CONNECTOR KIT FOR NES-Z

Models	Qty	Ref	Name	Description	MFGR Part Number
	1	Ј8	RS-232	Connector, Housing Receptacle, 1 x 3 Pin, 2 mm, Polyester	Molex: 35507-0300
	1	J19	VLogic	Connector, Housing Receptacle, 1 x 2 Pin, 2 mm, Polyester	Molex: 35507-0200
	1	J19	VLogic + V Wire	Cable, 24 AWG Red, 12 in, Tin Crimp Socket on one end	Molex: 0502128000-12-R4
	1	J19	VLogic -V Wire	Cable, 24 AWG Black, 12 in, Tin Crimp Socket on one end	Molex: 0502128000-12-B4
	5	J8, J19	Molex Crimps	Crimp, Socket 30-24 AWG, 1.4 mm max. insulation, Tin	Molex: 50212-8000
	1	J7	ENC1, MOTEMP	Connector, Housing Socket, 1 x 9 Pin, 1.25 mm, Nylon Beige	Hirose: DF13-9S-1.25C
	2	J9,J10	EtherCAT	Connector, Housing Socket, 1 x 4 Pin, 1.25 mm, Nylon Beige	Hirose: DF13-4S-1.25C
	1	J11	Halls	Connector, Housing Socket, 1 x 5 Pin, 1.25 mm, Nylon Beige	Hirose: DF13-5S-1.25C
	1	J12	Brake	Connector, Housing Socket, 1 x 2 Pin, 1.25 mm, Nylon Beige	Hirose: DF13-2S-1.25C
	2	J13,J14	CANopen	Connector, Housing Socket, 1 x 3 Pin, 1.25 mm, Nylon Beige	Hirose: DF13-3S-1.25C
	3	J7,J9,J10, J11,J12, J13,J14	DF13 Wires +V	Cable, 26 AWG Red, 12 in, Gold Crimp Contact on each end	Hirose: H4BBG-10112-R6
NS-Z-CK Connector	3	J7,J9,J10, J11,J12 J13,J14	DF13 Wires Gnd	Cable, 26 AWG Black, 12 in, Gold Crimp Contact on each end	Hirose: H4BBG-10112-B6
Kit	20	J7,J9,J10, J11,J12, J13,J14	DF13 Wires Gen Purp	Cable, 26 AWG White, 12 in, Gold Crimp Contact on each end	Hirose: H4BBG-10112-W6
	1	J12	Brake Wire	Cable, 26 AWG Blue, 12 in, Gold Crimp Contact on each end	Hirose: H4BBG-10112-L6
	24	J7,J9,J10, J11,J12, 13,J14	DF13 Crimps	Crimp, Socket, 30-26 AWG, 1 mm max Insulation, Gold	Hirose: DF13-2630SCFA
	1	J16	STO STO	Connector, Housing 2 x 8 Pin, 2 x 2 mm, Nylon Black	Hirose: DF11-16DS-2C
	1	J17	In1~In5, Out1-3, ENC2, Aref	Connector, Housing 2 x 10 Pin, 2 x 2 mm, Nylon Black	Hirose: DF11-20DS-2C
	3	J16,J17	DF11 Wires +V	Cable, 26 AWG Red, 12 in, Gold Crimp Contact on each end	Hirose: H3BBG-10112-R6
	4	J16,J17	DF11 Wires Gnd	Cable, 26 AWG Black, 12 in, Gold Crimp Contact on each end	Hirose: H3BBG-10112-B6
	17	J16,J17	DF11 Wires Gen Purp	Cable, 26 AWG White, 12 in, Gold Crimp Contact on each end	Hirose: H3BBG-10112-W6
	36	J16,J17	DF11 Crimps	Crimp, Socket, 28-24 AWG, 1.45 mm max Insulation, Gold	Hirose: DF11-2824SCFA(04)
	2	P16,P17	Cable Shields	Faston, Receptacle, 26-22 AWG, 0:11 - 0.125 in Wide 0.02 in thick, Positive Lock	TE: 353249-2
	1		STO Bypass PCB	Copley STO Bypass Board	Copley: 104-118972-01

Note: Specifications subject to change without notice.

Trademarks: CANopen® is a registered trademark of CAN in Automation, EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121736 Rev 14 Page 46 of 47

REVISION HISTORY

16-121736 Document Revision History

Revision	Date	Remarks
00	October 11, 2019	Initial released version
01	November 12, 2019	NES-D info added
02	November 22, 2019	NES-090-10 added
03	December 6, 2019	Corrections to diagram on page 15.
04	March 20, 2020	Update module photo on page 1, update ordering guide
05	May 20, 2020	Added thermals
06	February 22, 2021	ECAT connections updated, NES-D only
AA	April 7, 2021	Pre-production revision - Changed revision to pre-production naming convention. Updated signal names to follow NES-D and added connector kit for NES-D.
AB	November 1, 2021	Pre-production revision - Changed revision to pre-production naming convention. Added -Z board
07	June 22, 2022	Production revision Updated with 24V recommendations for VLogic, update with 3.3V input, update with capacitor on +HV input
08	August 8, 2022	Corrected pages 6 and 13 to match STO pinouts on page 14.
09	October 16, 2023	Updated text & graphics to change P1 to J1 (where applicable) and updated Accessories section. Added STO Warning on pages 6 & 14 and added U3 information on pages 24 & 35.
10	March 26, 2024	Update mechanical drawings: VLogic pin length and torque values. In +HV Connections & STO sections, update values & diagrams. For NES connections, replace +5 with +5VENC value, where applicable.
11	June 12, 2024	Replace obsolescent Arrow part number:128342V00R00 with new Arrow part number:128342V02R00. Correct RJ-45 pin signals on page 21.
12	October 17, 2024	For NES-EZ, replace Arrow part number:128342V02R00 with new Arrow part number:133133V01R03. Add Cx capacitor in diagrams on pages: 12, 13 & 38.
13	July 28, 2025	Where applicable, update and replace CAN Transceiver with EtherCAT MagneticsPg 5, correct pins 8,9,3,2 on the RS232 diagramReplace NES J2 STO Safety Control diagram showing MCU diagnosticUpdate Ambient Temperature Operating, -40 °C to +70 °C & Altitude to -400m to 16,000m (Pending) -Pg 1, replace photos showing black spacers & pg. 44 update the spacer descriptionUpdate NES-D & -Z Switches & LEDs diagrams.
14	August 26, 2025	-In Environmental section, correct typos in Ambient Temperature & Altitude ratings.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121736 Rev 14

Fax: 781-828-6547 Page 47 of 47

Tel: 781-828-8090