

that Copley offers. It can be mounted directly on the motor or within the robotic joints. This drive complies with the requirements of the robotics, AGV, industrial machinery, medical/ life-sciences and aerospace industries. It can be mounted to the user PC boards using either connectors, or it can be soldered into the board. An optional interface board provides connectors which simplify the integration into customer applications. The Nano has a third party approved STO feature. Opto-isolators provide connections to user wiring and controls.

Append -Z for Module/OEM Board Assy [-Z]

Note: For NPP-090-70-D and NPP-090-180-30-D

assemblies, heatsinks are installed at the factory.

copley **Nano**^{PLUS} Module CANopen

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

GENERAL SPECIFICATIONS

	NPP-090-10 NPP-090-10-D NPP-090-10-Z	NPP-090-70 NPP-090-70-D NPP-090-70-Z	NPP-180-10 NPP-180-10-D NPP-180-10-Z	NPP-180-30 NPP-180-30-D NPP-180-30-Z	Units
OUTPUT POWER			100 10 1	100 00 2	01110
Peak Current	10 (7.07)	*70 (49.5)	10 (7.07)	30 (21.2)	Adc (Arms, sinusoidal)
Peak Time	1	1	1	1	Sec
Continuous Current Peak Output Power	5 (3.54) 0.9	*35 (24.8) 6.3	5 (3.54) 1.8	15 (10.6) 5.4	Adc (Arms, sinusoidal) kW
Continuous Output Power	0.45	3.15	0.9	2.7	kW
	*Note: NP	P-090-70 must be so	oldered to a mounting	g PCBA to meet this o	output.
NPUT POWER HVmin to HVmax	+9 to +90	+9 to +90	+20 to +180	+20 to +180	Vdc, transformer-isolated
+HV Absolute Max.	+95	+95	+185	+185	Vdc, transformer-isolated
Ipeak	10	70	10	30	Adc (1 sec) peak
Icont	5	35	5	15	Adc continuous
VLOGIC VLOGIC Absolute Max.	+9 to +60 +60	+9 to +60 +60	+9 to +60 +60	+9 to +60 +60	Vdc, transformer-isolated Vdc, transformer-isolated
VLOGIC Power			encoder +5V @ 500		
WM OUTPUTS					
Туре		e inverter, 16 kHz c	enter-weighted PWM	carrier, space-vector	modulation
PWM Ripple Frequency Minimum Load Inductance	32 kHz 200 µH				
BANDWIDTH	200 μΠ				
Current Loop, Small Signal	2.5 kHz typical,	bandwidth will vary	with tuning & load ir	nductance.	
HV Compensation	Changes in HV	do not affect bandwi			
Current Loop Update Rate	16 kHz (62.5 µs)	5)			
Position & Velocity Loop Update Rate	е 4 кпz (250 µs)				
COMMAND INPUTS CANOPEN	CANopen: Cycli	c Synchronous Posit	ion/Velocity/Torque	Profile Position/Veloci	tv/Torque.
					tation Angle (CSTCA)
Stand-Alone Mode:	Pulse/Direction,		nor commanda (4 MH	Iz movimum roto)	
Digital Position Reference	Quad A/B Encod		per commands (4 MH line/sec, 40 Mcount/	/sec (after quadrature	
Digital Torque & Velocity Reference	PWM, Polarity		= 0% - 100%, Polar		- /
	PWM 50%			olarity signal required	
	PWM frequency PWM minimum		z minimum, 100 kHz	maximum	
Indexing			d from inputs or ASC	II commands.	
Camming	Up to 10 CAM to	ables can be stored	in flash memory.		
ASCII Analog		230,400 Baud, 3-wi y, Profile Velocity, Po			
DIGITAL INPUTS NPP	current, velocit	y, FIOINE VEIOCICY, FC	JSICIOII		
Number	7				
IN1~4, 6	General purpos	e inputs			
					10 k Ω pull-up to +5 Vdc,
					Vdc negative-going threshold
IN5				es not include 10 kΩ 0 us RC filter 1.6 kΩ	pull-up to +5 Vdc, max.
1115					egative-going threshold
	Also, connected	I to an ADC channel	for continuous signal	l acquisition.	
IN7					5V, max. voltage = +6 Vdc
		as SLI Function: SLI		negative-going thresh	old
DIGITAL INPUTS NPP-D		unction			
IN1~2					to +5 Vdc, max. voltage = +3
	Vdc, 2.53~3.50	Vdc positive-going	threshold, 1.25~2.20) Vdc negative-going	threshold
IN3~4					.0 k Ω pull-up to +5 Vdc, Vdc negative-going threshold
IN5				$0 \ \mu s \ RC \ filter, 1.6 \ k\Omega$	
-	max. voltage =	+6 Vdc, 2.53~3.43	Vdc positive-going th	hreshold, 1.25~2.20	Vdc negative-going threshold
INC			or continuous signal		NCA and ENCD and device it
IN6			en by an IC that check E, disabling the drive		NCA and ENCB encoder signals
IN7					ōV, max. voltage = +6 Vdc
DIGITAL INPUTS NPP-Z					
IN1~2				filter, 10 kΩ pull-up	
IND. 4					negative-going threshold
IN3~4					.0 k Ω pull-up to +5 Vdc, Vdc negative-going threshold
IN5				$0 \ \mu s \ RC \ filter, 1.6 \ k\Omega$	
-	max. voltage =	+6 Vdc, 2.53~3.43	Vdc positive-going th	hreshold, 1.25~2.20	Vdc negative-going threshold
	Also connected	to on ADC channel f		acquicition	
TNIC			or continuous signal		
IN6	Not available as	an input. It is drive		ks the states of the E	NCA and ENCB encoder signals

copley **Nano**^{PLUS} Module CANopen

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

DIGITAL OUTPUTS	
Number	6
OUT1~3	CMOS +5 Vdc inverters, 4.99 k Ω pull-up to 3.3 Vdc, functions programmable
	Source -8 mA @ VOH > 3.94 Vdc, Sink 8 mA @ VOL < 0.36 Vdc
OUT3	With NPP-D attached: Firmware controls duty-cycle for PWM braking.
OUT4~6	HS CMOS +3.3 Vdc inverters, functions programmable
	Source -16 mA @ VOH \ge 2.4 Vdc, Sink 16 mA @ VOL \le 0.4 Vdc
	General purpose programmable or SLI functions: OUT4 = SLI_MOSI, OUT5 = SLI_CLK, OUT6 = SLI_EN1
ANALOG INPUT	
Number	1
Туре	Differential, ±10 Vdc range, 5.1 k Ω input impedance, 16 bits, single-pole, -3 dB @ 1450 Hz input filter
Function	Torque, Velocity, Position command or as general purpose analog input
SERIAL COMMUNICATION PORT	
Signals	RS-232: RxD, TxD, SGND
Mode	Full-duplex, DTE serial communication port for drive setup and control, 9,600 to 230,400 Baud
Protocol	ASCII or Binary format
Isolation	Non-isolated. Referenced to Signal Ground.
CANOPEN PORT	
Format	100BASE-TX
Protocol	CANopen Application Protocol
Isolation	External magnetics required for module. NPP-D and NPP-Z have internal magnetics. Max. voltage with respect to grounds: 32 Vdc
MOTOR CONNECTIONS	
Motor U,V,W	Drive outputs to 3-phase brushless motor, Wye or delta connected DC brush motors use outputs U & V.
MOLOF 0, V, VV	Minimum inductance: 200 µH line-line
Freeder	
Encoder	Digital encoders, incremental and absolute (See FEEDBACK below).
	Analog Sin/Cos incremental
Halls	Digital U/V/W, 120°
Motemp	Input is programmable to disable the drive if the motor sensor drives input HI or LO.
FEEDBACK	
Incremental Encoders:	
Digital Incremental Encoder	Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required).
	5 MHz maximum line frequency (20 Hz counts/sec)
	1 kΩ pull-up on (+), 1 kΩ pull-down on (-) input
	VT+ = 1.2~2.0 Vdc min., VT- = 0.8~1.5 Vdc max., VH = 0.3 ~ 1.2 Vdc
Analog Incremental Encoder	Sin/Cos format (Sin+, Sin-, Cos+, Cos-), differential, 1 Vpeak-peak ±20%
Absolute Encoders:	BW > 300 kHz, 16-bit resolution, with zero-crossing detection
EnDat, SSI, CSR	Social Clock (X, X) and Data (A, A) signals
	Serial Clock (X, /X), and Data (A, /A) signals
Absolute A	SD+, SD- (A, /A) signals, 2.5 or 4 MHz, half-duplex, 32 bit
BiSS	MA+, MA- (X, /X), SL+, SL- (A, /A) signals, clock output from drive, data returned from encoder.
Terminators	All encoder data inputs and clock outputs are differential and require external terminators.
Commutation	Hall signals (U,V,W), 15 k Ω pull-up to +5V, 15 k Ω /100 pF RC to 74LVC3G14 Schmitt trigger at +5 Vcc
Encoder Power	+5 Vdc ±2% @ 250 mAdc max., shared by dual encoders.
HALLS	
Digital U-V-W	Single-ended, 120° electrical phase difference
-	Schmitt trigger, 1.5 us RC filter from active HI/LO sources, 5 Vdc compatible
	15 k Ω pull-up to +5 Vdc, 74LVC, 3.3 V thresholds
5V OUTPUT	
Number	2
Ratings	500 mA maximum. Protected for overload or shorts. Shared by dual encoders.

controls **DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS**

copley 🌈

Nano PLUS Module CANopen

SAFE TORQUE OFF(STO) Function Safety Integrity Level Inputs Type Disabling	SIL 3, Category 3, Performar 2 two-terminal: STO1_IN, ST Opto-isolators, 5V compatible	nce level e TO1_RTN, STO2_IN, STO2_RTN	possible when the STO function is active.
STO_STATUS_OUTPUT	STO status feedback, non-fu		
PROTECTIONS			
HV Overvoltage	+HV > +95 ±1 Vdc +HV > +185 ±1 Vdc	Drive outputs turn OFF until +HV is Drive outputs turn OFF until +HV is	
HV Undervoltage	$+HV < +9.0 Vdc \pm 1 Vdc$ +HV < +20 Vdc ±1 Vdc	Drive outputs turn OFF until +HV	s > +8.5 Vdc ±0.5 Vdc (90 V models). is > +8.5 Vdc ±0.5 Vdc (90 V models). is > +19.5 Vdc ±0.5 Vdc (180 V models).
Drive Over Temperature	PC Board > 90 °C +3/-0 °C	Programmable as latching or temp	
Short Circuits		ground, internal PWM bridge faults	
I ² T Current Limiting Latching / Non-Latching	Programmable: continuous c Programmable response to e	urrent, peak current, peak time for dri rrors	ve and motor
MECHANICAL & ENVIRONMEN	5 1		
Size, Weight	NPP-Z: 1.85 x 1.38 x 1.32 in	[35 x 30 x 21.8 mm], 1.2 oz [0.34 kg [47 x 35 x 33.6 mm], 2.0 oz [0.57 kg [97.2 x 153.7 x 45 mm], 11.5 oz [0.3]]
Ambient Temperature	Operating: 0 to +45 °C, Stor		
Humidity	0 to 95%, non-condensing	5	
Altitude Vibration	\leq 2000 m (6,500 ft) 2 g peak, 10~500 Hz (Sine)		
Shock	$10 q$, 10 ms, $\frac{1}{2}$ Sine pulse		
Contaminants	Pollution Degree 2		
AGENCY STANDARDS CONFO	RMANCE		
Functional Safety			
Directive 2006/42/EC (Mac	08-2, IEC 61508-3, (SIL 3)	FUNCTIONAL	
ISO 13849-1 (Cat 3, P		SAFETY	ISO 13849-1
IEC 61800-5-2 (SIL 3			Up to PL e (Cat.3)
Product Safety			IEC 61800-5-2
Directive 2014/35/EU (Low	v Voltage)		Up to SIL 3
IEC 61800-5-1 EMC		RoHS Directive 2011/65/EU is now pa	art of the CE marking procedure
Directive 2014/30/EU (EMC	.)	All the agency standards are pending	5.
IEC 61800-3	.)	The agency standards are pending	
Restriction of the Use of Certain	Hazardous Substances (RoHS)		
Directive 2011/65/EU and i	ts amendments 2015/863/EU		
Approvals			
UL recognized component t			
UL 61800-5-1, UL 618 IEC 61800-5-1, IEC 61			
	1000 5 2		
	San to the Contex NANOPlus	er Guide for NANO Family, (Part Nu	m ham 16 (120206)
Rei	rer to the Copiey NANO. "" Use	er Guide for NANO Family, (Part Nu	mber: 10-138296).

For information on any application using the NANO drive STO feature, refer to the **Copley** NANO^{Plus} User Guide for NANO Family (PN: 16-138296).

Failure to heed this warning can cause equipment damage, injury, or death.

NPP

CANOPEN COMMUNICATIONS

CANOPEN

Signal

CANTX

CANRX

SGND

CANopen is the communication protocol based on the CAN V2.0b physical layer, a robust, two-wire communication bus originally designed for automotive use where low-cost and noise-immunity are essential. CANopen adds support for motion-control devices

CANOPEN COMMUNICATION

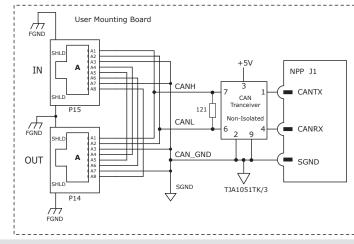
NPP uses the CAN physical layer signals CANH, CANL, and CAN_GND for connection, and CANopen protocol for communication. Before installing the drive in a CAN system, it must be assigned a CAN Node-ID (address).

CANOPEN COMMAND INPUTS

J1 Pins

33

31


39,40

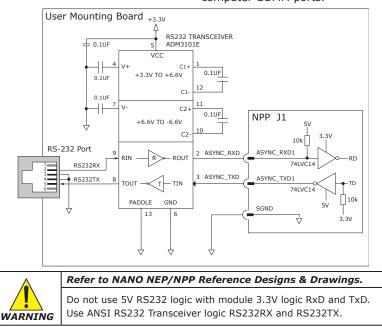
In the following diagram, it shows connections between the NPP and RJ-45 connectors on the NPP-D. If the NPP is the last node on a CAN bus, the internal terminator resistor can be used by adding a connection on the PC board as shown.

and command synchronization. The result offers a highly effective
combination of data-rate and low costs for the multi-axis motion
control systems. Device synchronization enables multiple axes to
coordinate moves as if they were driven from a single control card.

A maximum of 127 CAN nodes are allowed on a single CAN bus. Up to six digital inputs can be used to produce CAN Node-IDs from $1\sim63$, or the Node-ID can be saved to the flash memory in the module. Node-ID 0 is reserved for the CANopen master on the network.

If there are multiple NPP devices on the mounting PCB, then the terminating resistor should be near the NPP that is farthest from the CAN network connection to the PCB. The node Node-ID of the NPP may be set by using digital inputs, or programmed into flash memory in the drive.

RS-232 COMMUNICATIONS


The serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 230,400 Baud. It can be used by CME software for drive configuration and setup or it can be used by the external equipment sending ASCII commands.

In the following diagram, the circuit shown is used on the NPP-D and it is recommended for the user's PC boards. It converts the single-ended TTL signals levels in the NPP into the ANSI RS-232 levels which are the standard for serial communications and computer COMM ports.

RS-232 PORT		
Signal	Pins	
RS232RX	2	
RS232TX	5	
SGND	34	

DRIVE J1	
-----------------	--

Signal	Pins
ASYNC_RXD1	28
ASYNC_TXD1	30
SGND	39,40

SAFE TORQUE OFF (STO)

The Safe Torque Off (STO) function is defined in IEC 61800-5-2. Two channels are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from producing torque in the motor.

This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When the opto-couplers are energized (for example, the current is flowing in the input diodes), the control core is enabled to control the ON/OFF state of the PWM outputs to produce torque in the motor.

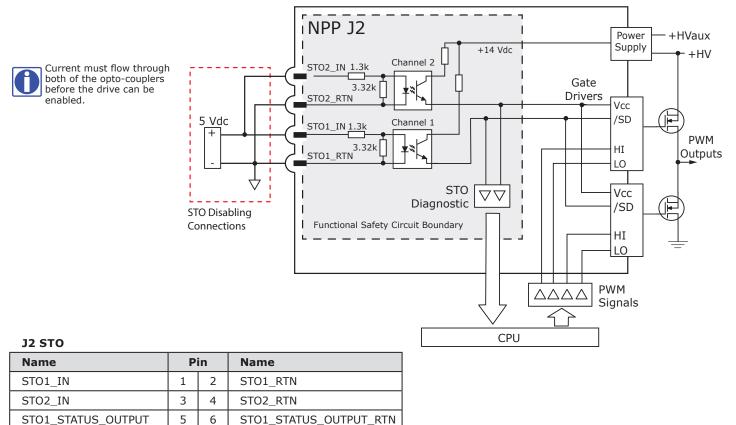
INSTALLATION

 Refer to the Copley NANO^{Plus} User Guide for NANO Family, (Part Number: 16-138296).

 For information on any application using the NANO drive STO feature, refer to the Copley

 NANO^{Plus} User Guide for NANO Family (PN: 16-138296).

 Failure to heed this warning can cause equipment damage, injury, or death.


STO DISABLE

In order for the PWM outputs of the NPP to be activated, the current must be flowing through the opto-couplers that are connected to the STO1_IN and STO2_IN terminals and the drive must be in an ENABLED state. When either of the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor.

This diagram shows connections that will energize both opto-couplers from a +5V source. When this is done, the STO feature is disabled and control of the output PWM stage is under control of the digital control core. If the STO feature is not used, these connections must be made in order for the drive to be enabled.

STO DISABLE CONNECTIONS

FUNCTIONAL DIAGRAM

STO OPERATION

STO Input Voltage	STO State
STO1_IN AND STO2_IN ≥ 3.0 Vdc	STO Inactive. Drive can be enabled to produce torque.
STO1_IN <i>OR</i> STO2_IN ≤ 0.8 Vdc	STO Active. Drive cannot be enabled to produce torque.
STO1_IN OR STO2_IN Open	

Note: In the above table, the voltages are referenced between a STOx_IN and a STOx_RTN. For example, V(STO1) = V(STO1_IN) - V(STO1_RTN) The maximum voltage allowed for the STO inputs are 7.0 VDC.

DIGITAL COMMAND INPUTS: POSITION

STAND-ALONE MODE DIGITAL POSITION-CONTROL INPUTS

copley **Nano**^{PLUS} Module CANopen

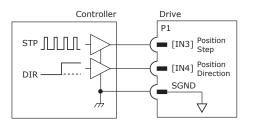
NPP works with motion controllers that output pulses to command position. The following formats are supported:

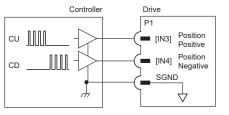
Step/Direction

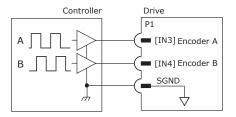
controls

In Step/Direction mode, a pulse-train controls motor position, and the direction is controlled by a DC level at the Direction input. Count-Up/Count-Down (CU/CD)

CU/CD (Count-Up/Count-Down) signals command the motor to move CW or CCW depending on to which input the pulse-train is directed.


A/B Ouadrature Encoder


In the A/B Quadrature Encoder mode, the motor can be operated in an electronic gearing mode by connecting the inputs to a Quadrature Encoder on another motor. In all cases, the ratio between input pulses and motor revolutions is programmable.


STEP/DIRECTION INPUTS

COUNT-UP/COUNT-DOWN INPUTS

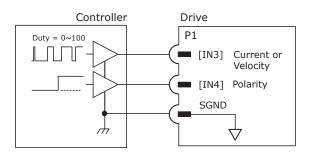
QUAD A/B ENCODER INPUTS

Command Options	Name	J1 Pins
Step, Count Up, Encoder A	IN3	7
Direction, Count Down, Encoder B	IN4	8

DIGITAL COMMAND INPUTS: VELOCITY, TOROUE

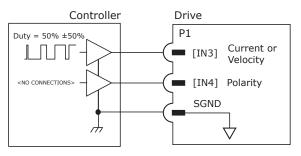
STAND-ALONE MODE DIGITAL VELOCITY-TORQUE INPUTS

NPP works with the motion controllers that output pulses to the command Velocity or Torque. The following formats are supported: Pulse/Direction


In Pulse/Direction mode, a pulse-train with variable duty cycle on IN4 controls Velocity or Torque from $0 \sim 100\%$.

- -IN5 HI or LO controls the direction of the Velocity or polarity of the Torque.
- PWM 50%

In 50% PWM mode, a single signal of 50% duty cycle commands 0% Velocity/Torque.


- -Increasing the duty cycle to 100% commands positive Velocity/Torque.
- -Decreasing the duty cycle to 0% commands negative Velocity/Torque.

PWM & DIRECTION

Command Options	Name	J1 Pins
PWM Vel/Trq, PWM Vel/Trq & Direction	IN3	7
PWM/Dir Polarity, (none)	IN4	8

50% PWM

HIGH SPEED INPUTS: IN1, IN2, IN3, IN4, IN6, IN7

copley **Nano**^{PLUS} Module CANopen

The six digital inputs to the NPP can be programmed to a selection of functions. All inputs include the following:

- 100 ns RC filters when they are driven by the active sources (CMOS, TTL, etc.).
- 10 k Ω pull-up resistors to +5 Vdc.

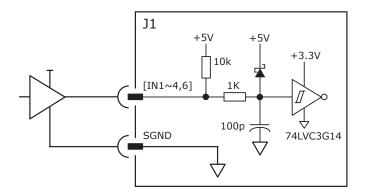
INPUT LEVEL FUNCTIONS

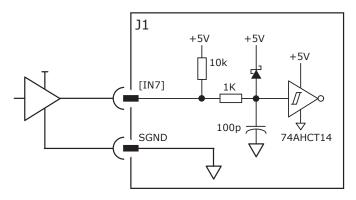
- Drive Enable, Enable with Clear Faults, Enable with Reset
- PWM Sync

controls

- Positive Limit Switch
- Negative Limit Switch
- Home Switch
- Encoder Fault
- Motor Temperature Sensor Input
- Motion Abort
- High-Resolution Analog Divide

Inputs IN1~4, and IN6 have 100 nanosecond rise time RC filters, each input with a 10 k Ω pull-up resistor to +5 VDC.


In addition to the selection of functions, the active level for each input is individually programmable. Input level functions have programmable HI or LO to activate the function. Input transition functions are programmable to activate on LO -> HI, or HI -> LO transitions.


PCF/

INPUT TRANSITION FUNCTIONS

- Clear Faults and Event Latch
- Drive Reset
- PWM Sync Input
- Trajectory Update
- Count Input Edges, Save to Register
- High-Speed Position Capture
- Simulated Absolute Encoder Burst
- Abort Move if > N Counts From Destination in Register

IN7 has the same input network, but the interface IC is a 74AHCT14BQ powered with 5.0 Vdc.

SPECIFICATIONS

Input	Data	Notes
	HI	$V_{T} + \ge 1.42 \sim 2.38 \text{ Vdc}$
Input Voltages	LO	V _⊤ - ≤ 0.70~1.44 Vdc
IN1~4,6	Max	+6 Vdc
	Min	0 Vdc
	HI	V_{T} + \geq 2.00 Vdc
Input Voltage IN7	LO	$V_{T}^{-} \leq 0.55 \text{ Vdc}$
	Max	+6 Vdc
	Min	0 Vdc
Pull-up	R1	10 kΩ
	R2	1 kΩ
Low Pass Filter	C1	100 pF
	RC	100 ns

CONNECTIONS

Name	J1 Pins
IN1	5
IN2	6
IN3	7
IN4	8
IN6	10
IN7	11

J1 SGND Pins 3,4,18,39,40,44,45,56,57

For information on Adapting 24V logic to 5V logic, consult the Factory.

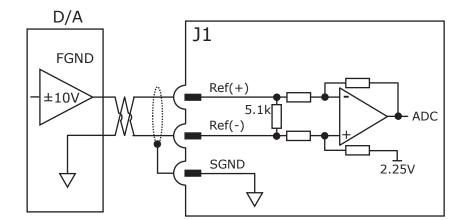
5V logic. Do not exceed 6V. Do not connect a 24V logic to this input. Refer to page 24 that shows the circuit for 24V inputs.

MOTOR OVERTEMP INPUT: IN5

Input IN5 has a 100 microsecond rise time RC filter, with a 1.6 k Ω pullup resistor to +5 VDC. If it is not used for the Motemp function, IN5 can be re-programmed for other input functions. The input network is the default used for a DIN44081/2 type PTC thermistor mounted in a motor.

IN5_VF has a voltage-to-frequency [V to F] converter. It connects to the FPGA where the frequency decodes to a voltage. By using this converter, it can be configured to work with thermistors to protect motors and/or loads. Use the CME software to select the input to be used for the motor overtemp protection.

CONNECTIONS 11 +5V +5V Signal **J1 Pins** +5V 3.3V 10k IN5 9 1.6k 10k 1kIN5 IN5 OT L 100 pF 0.01µF 0.1µF ↔ 74HC2G17 74LVC3G14 SGND DIN44081/2 300 Thermistor V to F 100k


ANALOG INPUT: AIN1

As a reference input, the AIN1 takes Position/Velocity/Torque commands from a controller.

SPECIFICATIONS

Specification	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.1 kΩ

Signal	J1 Pins
Ref(+)	2
Ref(-)	1

If it is not used as a command input, it can be used as generalpurpose analog input.

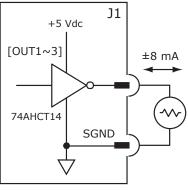
DIGITAL OUTPUTS: OUT1~OUT3

Digital outputs [OUT1~3] are CMOS inverters. They operate from +5V and can source/sink 8 mAdc.

OUTPUT FUNCTIONS

- Fault
- Custom Event

controls


- PWM Sync
- Custom Trajectory Status
- Custom Position-Triggered Output
- Program Control
- Brake Control

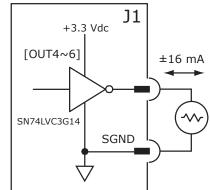
Signal	J1 Pins	
OUT1	13	
OUT2	12	
OUT3	15	
J1 SGND Pins		
3,4,18,39,40,44,45,56,57		

copley **Nano**^{PLUS} Module CANopen

In the following diagram, the output functions shown are programmable to turn the output On (HI) or OFF (LO) when they are active.

PCF/

DIGITAL OUTPUTS: OUT4~OUT6


Digital outputs [OUT4~6] are CMOS inverters. They operate +3.3V and can source/sink 16 mAdc.

OUTPUT FUNCTIONS

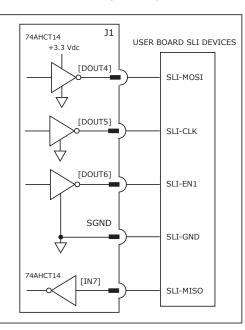
- Fault
- Custom Event
- PWM Sync
- Custom Trajectory Status
- Custom Position-Triggered Output
- Program Control

Name	J1 Pins
OUT4	14
OUT5	17
OUT6	16

In the following diagram, the output functions shown are programmable to turn the output ON (HI) or OFF (LO) when it is active.

SLI: DOUT4, DOUT5, DOUT6, IN7

The three outputs and one input operate as an SLI (Switch and LED Interface) port for controlling LEDs and reading the settings of the network address switches. In the following diagram, it shows the outputs/input in the SLI mode.

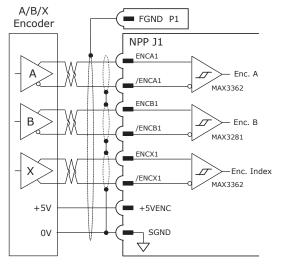

If they are not used for SLI, they are programmable for other functions to turn the output ON (HI) or OFF (LO) when they are active. [IN7] is shown in the diagram as part of the SLI function.

OUTPUT FUNCTIONS

- Fault
- Brake
- Custom Event
- PWM Sync
- Custom Trajectory Status
- Custom Position-Triggered Output
- Program Control

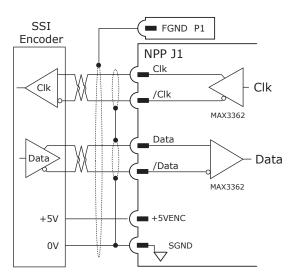
J1 SGND Pins		
3,4,18,39,40,44,45,56,57		

SLI PORT	Signal	J1 Pins
SLI-MOSI	DOUT4	14
SLI-CLK	DOUT5	17
SLI-EN1	DOUT6	16
SLI-GND	SGND	18
SLI-MISO	IN7	11



copley **Nano**^{PLUS} Module CANopen

ENCODER 1 (PRIMARY FEEDBACK)


QUAD ENCODER WITH INDEX

SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system.

The NPP drive provides a train of clock signals in differential format that are sent to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The number of encoder data bits and counts per motor revolution are programmable. The hardware bus consists of two signals: SCLK and SDATA. The SCLK signal is only active during transfers. Data is clocked in on the falling edge of the clock signal.

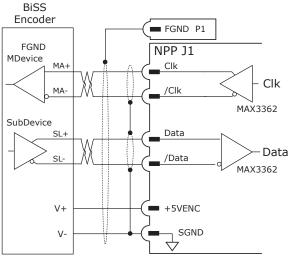
SSI, BISS SIGNALS

SSI	BiSS	Signal	J1 Pins
Clk	MA+	ENCX1	55
/Clk	MA-	/ENCX1	54
Data	SL+	ENCA1	51
/Data	SL-	/ENCA1	50
+5VENC		64,66	

A/B/X SIGNALS

Signal	J1 Pins	
ENCA1	51	
/ENCA1	50	
ENCB1	53	
/ENCB1	52	
ENCX1	55	
/ENCX1	54	
+5VENC	64, 66	

FRAME GROUND
P1
P1


J1 SGND Pins
3,4,18,39,40,44,45,56,57

BISS ABSOLUTE ENCODER

BiSS is an - Open Source - digital interface for sensors and actuators. BiSS refers to principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options.

- Serial Synchronous Data Communication
- Cyclic at high speed
- 2 Unidirectional Lines Clock and Data
- -Line delay compensation for high speed data transfer -Request for data generation at slaves -Safety capable: CRC, Errors, Warnings
- -Bus capability including actuators
- Bidirectional

-BiSS C-protocol: Continuous mode

Note: Connect Single (outer) shields at the drive end. Connect Inner (shields to the Signal Ground on the drive.

ENCODER 1 (PRIMARY FEEDBACK)

ENDAT ABSOLUTE ENCODER

The EnDat interface is a Heidenhain interface that functions similar to SSI in the use of clock and data signals. In addition, it supports analog Sin/Cos channels from the same encoder.

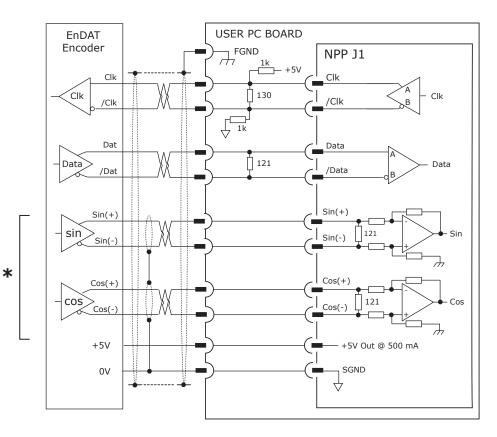
copley **Nano**^{PLUS} Module CANopen

The number of position data bits are programmable and so are the use of Sin/Cos channels. In the EnDat specification, using the Sin/ Cos incremental signals is optional.

PCF/

ENDAT SIGNALS

controls


EnDAT	Signal	J1 Pins
Clk	ENCX1	55
/Clk	/ENCX1	54
Data	ENCA1	51
/Data	/ENCA1	50
Sin(+)*	SIN1+	46
Sin(-)*	SIN1-	47
Cos(+)*	COS1+	48
Cos(-)*	COS1-	49
+5V	+5ENC	64,66

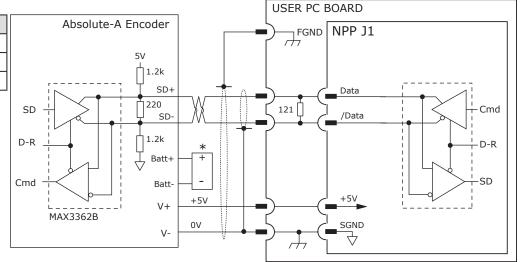
*Note: In the EnDAT column, the Sin/ Cos is optional with EnDat 2.2 or any 1 Mbit or faster.

If EnDat 2.1 < 1 Mbit, EnDat Sin/Cos is required.

J1 Signal Ground Pins

3,4,18,39,40,44,45,56,57

ABSOLUTE-A ENCODER


The Absolute A interface is a serial, half-duplex type that is electrically the same as the RS-485.

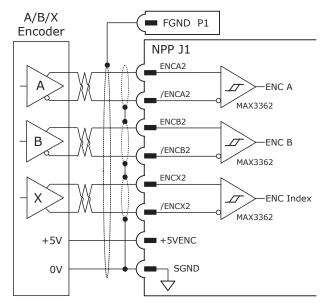
Note the battery which must be connected. Without the battery, the encoder will produce a fault condition.

ABSOLUTE-A SIGNALS

ABS-A	Signal	J1 Pins
Data	ENCA1	51
/Data	/ENCA1	50
+5V	+5ENC	64,66

- Absolute A •
- Tamagawa Absolute A
- Panasonic Absolute A Format
- Sanyo Denki Absolute A

Note: Signal (outer) shields should be connected at the drive end. The inner shield is optional for digital encoders and should only be connected to Signal Ground on the drive.

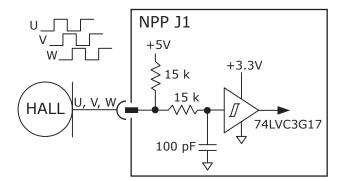

copley **Nano**^{PLUS} Module CANopen

ENCODER 2 (SECONDARY FEEDBACK)

QUAD ENCODER WITH INDEX

In the following diagram, it shows the secondary encoder connections. The secondary encoder only supports A/B/X incremental encoders.

A/B/X SIGNALS			
Signal J1 Pins			
ENCA2	59		
/ENCA2	58		
ENCB2	61		
/ENCB2	60		
ENCX2	63		
/ENCX2 62			
+5VENC 64, 66			
FRAME GROUND			
P1			
J1 SGND Pins			


The tables identify the signals and pins.

3,4,18,39,40,44,45,56,57

OTHER MOTOR CONNECTIONS

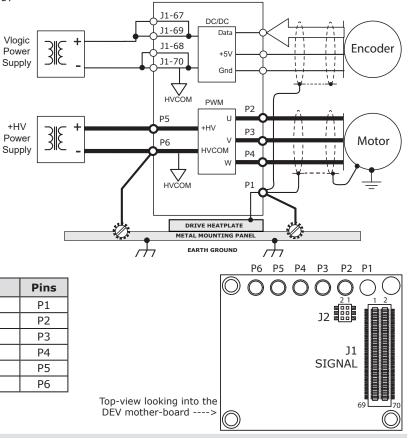
HALLS

Hall sensors in a brushless motor are driven from the magnetic field in the motor and provide commutation feedback without an encoder.

When they are used with the incremental encoders, they enable the motor to operate without a phase-finding cycle.

HALL	SIGNALS

Signal	J1 Pins
HALLU	41
HALLV	42
HALLW	43



+HV CONNECTIONS

POWER SUPPLIES

The drive main power, +HV is typically supplied by unregulated DC power supplies. These power supplies must be isolated from the mains, and all circuits should be grounded from earth wired to HVCOM at the drive. The +HV power supply connects to P5 and P6. For good wiring practice, the +HV wires should be twisted together for noise suppression, and the power supply should not be grounded. Doing this ensures that the higher currents flowing in these conductors will not flow through any circuit grounds where they might induce noise. During deceleration, mechanical energy in the motor and load is converted back into electrical energy that must be dissipated as the motor comes to a stop.

While some of this is converted to heat in the motor windings, the rest of it will flow through the drive into the power supply. An external storage capacitor should be used if the load has appreciable inertia. It should be sized such that adding the undissipated energy from the motor will not raise the voltage beyond the point at which the drive shuts down. When this is not possible, an external 'dumper', or regenerative energy dissipater must be used which acts as a shunt regulator across the +HV and HVCOM terminals.

GROUNDING

The P6 connection to ground keeps the +HV power source stable at the drive while the voltage at the power supply (-) varies due to the cable resistance and the +HV current. Grounding at P1 provides a PE (Protective Earth) connection as well as a point to ground the motor cable shields.

P1~P6		
Signal	Pin	
FGND	P1	
MOTU	P2	
MOTV	P3	
MOTW	P4	

+HV

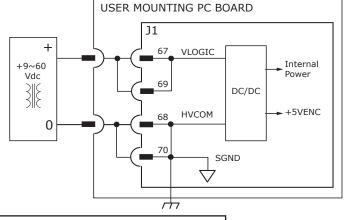
HVCOM

VLOGIC CONNECTIONS

DESCRIPTION

VLOGIC is required for the operation of the drive. It powers the internal logic and the control circuits. Encoder +5V is derived from VLOGIC.

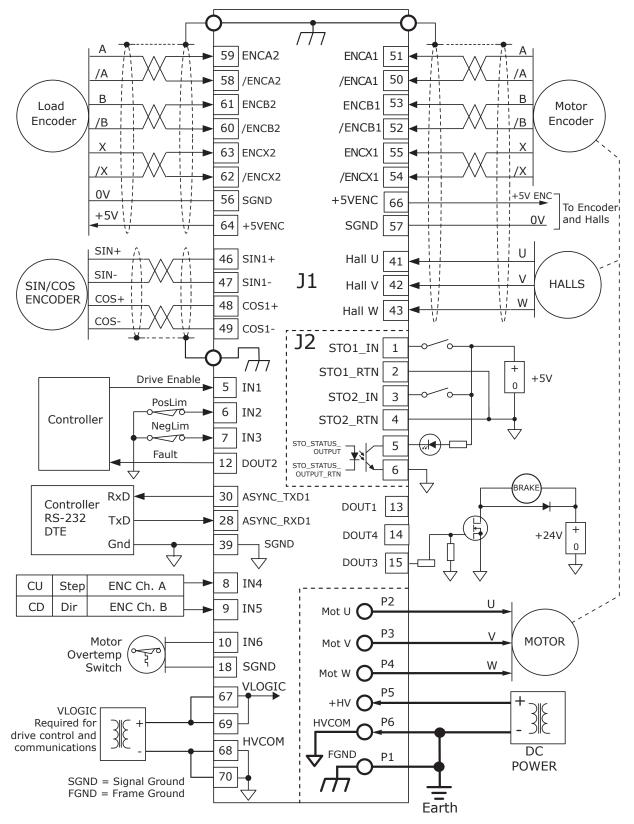
When the STO feature is used, VLOGIC must be produced by power supplies with transformer isolation from the mains and PELV or SELV ratings and a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLOGIC can be driven from a single power supply.


J1 VLOGIC

Name	Pin		Name
VLOGIC	67	68	HVCOM
VLOGIC	69	70	HVCOM

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLOGIC +9~60. 24V power is recommended. If common to HV do not exceed 60V, use REGEN protection, and diode isolation from HV.

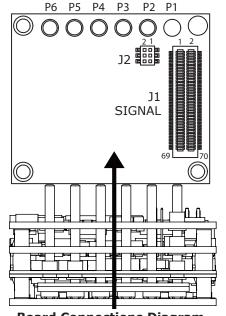


NPP TYPICAL CONNECTIONS

The following diagram shows the NPP connections and identifies the pins and signals.

NPP Connections Diagram

lano^{PLUS} Module CANopen



PC BOARD CONNECTIONS

The following diagram shows the topside view of the pins and signals pointed downwards towards the PC user mounting board.

Signal	Pin
FGND	1
MOTU	2
MOTV	3
MOTW	4
+HV	5
HVCOM	6

copley (

Board Connections Diagram

J2 STO

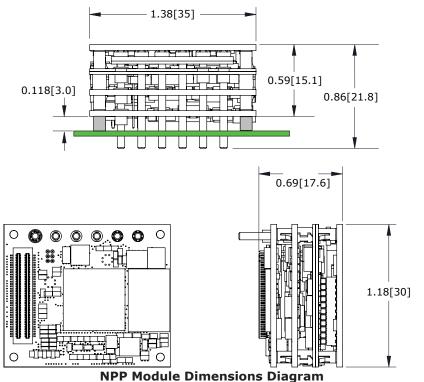
Name	Pin		Name
STO1_RTN	2	1	STO1_IN
STO2_RTN	4	3	STO2_IN
STO_STATUS_OUTPUT_RTN	6	5	STO_STATUS_OUTPUT

J1 SIGNAL

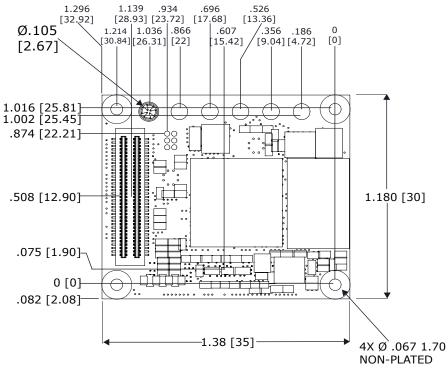
J1 SIGNAL				
Signal	Pin		Signal	
REFIN1-	1	2	REFIN1+	
SGND	3	4	SGND	
[ENABLE] IN1	5	6	IN2	
IN3	7	8	IN4	
IN5	9	10	IN6	
IN7	11	12	DOUT2	
DOUT1	13	14	DOUT4	
DOUT3	15	16	DOUT6	
DOUT5	17	18	SGND	
N.C.	19	20	N.C.	
N.C.	21	22	N.C.	
N.C.	23	24	N.C.	
N.C.	25	26	N.C.	
N.C.	27	28	ASYNC_RXD1	
N.C.	29	30	ASYNC_TXD1	
CAN_RX	31	32	ASYNC_RXD2	
CAN_TX	33	34	ASYNC_TXD2	
HSTL_0P	35	36	HSTL_1P	
HSTL_ON	37	38	HSTL_1N	
SGND	39	40	SGND	
HALLU	41	42	HALLV	
HALLW	43	44	SGND	
SGND	45	46	SIN1+	
SIN1-	47	48	COS1+	
COS1-	49	50	/ENCA1	
ENCA1	51	52	/ENCB1	
ENCB1	53	54	/ENCX1	
ENCX1	55	56	SGND	
SGND	57	58	/ENCA2	
ENCA2	59	60	/ENCB2	
ENCB2	61	62	/ENCX2	
ENCX2	63	64	+5VENC	
N.C.	65	66	+5VENC	
VLOGIC	67	68	HVCOM	
VLOGIC	69	70	НУСОМ	

*Note: In the Signal column, the asterisk indicates do not connect to these pins. Consult the factory for AN146: IDC Inter-Drive Communication.

Ref Des	Label	Mfgr	Part Number *	Description	Qty
J1	Signal	WCON	3620-S070-022G3R02	Header, 70 pos, 0.5 mm pitch	1
J2	STO	WCON	2521-203MG3CUNR1	Header, 6 pos, 1 mm pitch	1
P1~P6	+HV, Motor	WINPIN	WP-WJ018G3R1	RCPTL Outer Sleeve Crown Spring	6
*Note: The Part Number column indicates the parts that require the purchase of reels for those components					


*Note: The Part Number column indicates the parts that require the purchase of reels for those components. Refer to the following vendor to contact for approved value-added partner Action Electronics. Action Electronics, Inc. Walpole, MA 02081-2522-US

Phone: (508) 668-5621


NPP MODULE

The following diagram shows the NPP module dimensions.

PC BOARD MOUNTING DIMENSIONS

The following diagram shows the bottom surface dimensions on the PC user mounting board.

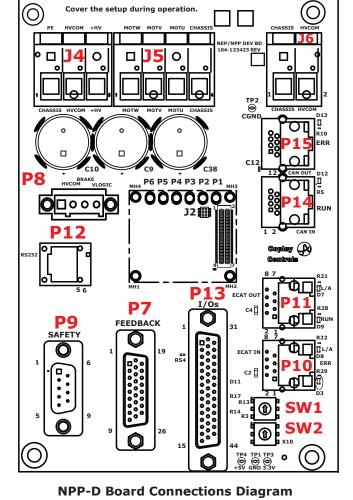
PC User Mounting Board Dimensions (Bottom View)

CONTROLS

The NPP-D Board diagram shows the connections and board layout. The tables identify the signals and pins for each connector.

copley **Nano**^{PLUS} Module CANopen

J4 +HV		
Signal	Pin	
PE	1	
HVCOM	2	
+HV	3	


J5 MOTOR

Signal	Pin
MOTW	1
MOTV	2
MOTU	3
FGND	4

P8 BRAKE

Signal	Pin
HVCOM	1
BRAKE	2
VLOGIC	3
VLOGIC	4

Signal	Pin
N.C.	6
RS232TX1	5
SGND	4
SGND	3
RX232RX1	2
N.C.	1

J6 HVCOM

PIN	Signai	
1	FGND	
2	HVCOM	

P14 CANOPEN

Pin	Name
8	*
7	CGND
6	*
5	*
4	*
3	CGND
2	CANL
1	CANH

P15 CANOPEN

Pin	Name		
8	*		
7	CGND		
6	*		
5	*		
4	*		
3	CGND		
2	CANL		
1	CANH		
	8 7 6 5 4 3 2		

*Note: In the Name column, the asterisk indicates the pins are feed-through between P14 & P15. They have no internal connections.

Note:

P10 & P11 are used for EtherCAT and cannot be used in the NPP.

P9 STO

Signal	Pin		Signal
FGND	1	6	STO_STATUS_OUTPUT
STO1_24V_IN	2	7	STO_STATUS_OUTPUT_RTN
STO1_RTN	3	8	SGND
STO2_24V_IN	4	9	VLOGIC +24V
STO2_RTN	5		

P7 MOTOR FEEDBACK

Pin	Signal	Pin	Signal	Pin	Signal
1	FGND	10	/ENCB1	19	SIN1+
2	HALLU	11	ENCB1	20	COS1-
3	HALLV	12	/ENCA1	21	COS1+
4	HALLW	13	ENCA1	22	/ENCX1
5	SGND	14	/ENCS1	23	ENCX1
6	+5VENC	15	ENCS1	24	N.C.
7	IN5	16	SGND	25	SGND
8	/ENCX1	17	+5VENC	26	SGND
9	ENCX1	18	SIN1-		

P13 I/O & ENCODER 2

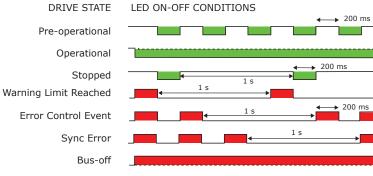
Pin	Signal	Pin	Signal	Pin	Signal
1	REFIN1-	16	SGND	31	DOUT1
2	REFIN1+	17	SGND	32	DOUT2
3	IN1_24V	18	SGND	33	DOUT3
4	IN2_24V	19	SGND	34	N.C.
5	IN3	20	SGND	35	DOUT4
6	IN4	21	SGND	36	DOUT5
7	IN5	22	SGND	37	DOUT6
8	IN6	23	SGND	38	N.C.
9	IN7	24	SGND	39	N.C.
10	ENCA2	25	SGND	40	/ENCA2
11	ENCB2	26	SGND	41	/ENCB2
12	ENCX2	27	SGND	42	/ENCX2
13	SGND	28	+5VENC	43	+5VENC
*14	*HSTL_1N	*29	*HSTL_1P	*44	*HSTL_0P
15	FGND	*30	*HSTL_0N		

*Note: In the table, the asterisk indicates do not connect to these pins. Consult the factory for AN146: IDC Inter-Drive Communication.

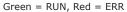
NPP-D CANOPEN CONNECTORS

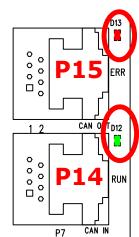
CANOPEN CONNECTORS

copley (


Dual RJ-45 connectors that accept standard Ethernet CAT-5 cables are provided for CANopen connectivity.

P14 CAN-IN			P15 C	AN-OUT
Pin	Signal		Pin	Signal
A1	CANH		A1	CANH
A2	CANL		A2	CANL
A3	CAN_GND		A3	CAN_GND
A4	*		A4	*
A5	*		A5	*
A6	*		A6	*
A7	CAN_GND		A7	CAN_GND
A8	*		A8	*


*Note: In the Signal column, the asterisk indicates the pins are feed-through between P14 & P15. They have no internal connections.


CAN LEDS

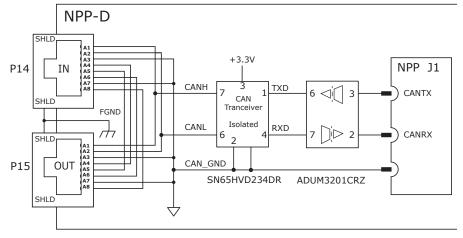
The RED LED "ERR" shows the status of the CAN physical layer and errors due to missing messages.

PLUS Module CANopen

8

ECAT IN O

P10


DRIVE STATUS LED (AMP)

A bi-color LED displays the state of the drive. Colors do not alternate and can be solid ON or $B_{LINKING}$. If multiple conditions occur, only the top-level condition will be displayed. When that condition is cleared, the next condition in the table is shown.

LED	Condition Description
Red/Blinking	Latching fault. Operation cannot resume until the drive is Reset.
Red/Solid	Transient fault condition. Drive can resume the operation when the condition causing the fault is removed.
GREEN/SLOW-BLINKING	Drive OK but NOT-enabled. Can run when enabled.
Green/Fast-Blinking	Positive or Negative limit switch active. Drive can only move in the direction not inhibited by the limit switch.
GREEN/SOLID	Drive OK and enabled. Can run in response to reference inputs or CANopen commands.

LATCHING FAULTS

Default	Optional (Programmable)
Short circuit (Internal or External)	Over-voltage
Drive over-temperature	Under-voltage
Motor over-temperature	Motor Phasing Error
Feedback Error	Command Input Lost
Following Error	Motor Wiring Disconnected
STO Active	Over Current (Latched)

021, USA Tel: 781-828-8090

D8

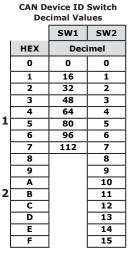
copley **Nano**^{PLUS} Module CANopen **PCF NPF**

NPP-D CAN ADDRESS

CAN DEVICE ID

Drives operating on a CANopen system must have a Device ID set either through programming or through inputs or switches located on the Dev board. When a device requires a positive identification that is independent of cabling, a Device ID is needed. In the NPP-D, the Device ID is assigned two, 16-position rotary switches with hexadecimal encoding. These switches can set the Device ID of the drive from $0x01 \sim 0x7F$ ($1 \sim 127$ decimal). In the table, the Decimel column includes the corresponding hex settings for each switch (SW1 and SW2).

For Example 1: To find the switch settings for the Decimal Device ID 107, refer to the table to calculate the following:

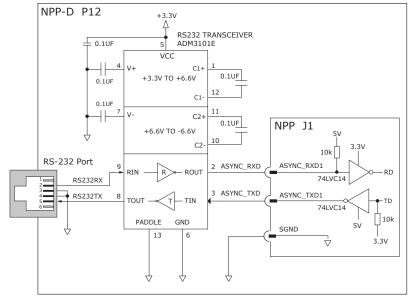

1)In the table SW1 column, find the highest number that is less than 107, (96).

Refer to the SW1 column and set $\underline{SW1}$, (96) to the corresponding hex value that appears in the HEX column, (6).

96 < 107 and 112 > 107, so SW1 = 96 = Hex 6 2)Subtract (96) from the desired Device ID (107) to get the decimal value of switch SW2, (11). Refer to the SW2 column and set <u>SW2, (11)</u> to the corresponding hex value that appears in the HEX

column, (B). SW2 = (107 - 96) = 11 = Hex B

NPP-D RS-232 CONNECTIONS


RS-232 CONNECTION

The RS-232 port is used to configure the drive for stand-alone applications, or it is used for configuration before it is installed into a CAN network. The CME software communicates with the drive over this link and it is then used for the complete drive setup. The CAN Device ID that is set by the rotary switches can be monitored, and a Device ID programmed as well.

The RS-232 connector, P12, is a modular RJ-11 type that uses a 6-position plug, four wires of which are used for RS-232. A connector kit is available (SER-USB-RJ11) that includes the modular cable, and an adapter to interface this cable with a 9-pin RS-232 port on a computer.

P12 DEV RS-232

Pin	Signal	
2	RS232RX1 [RxD]	
3,4	SGND	
5	RS232TX1 [TxD]	

SER-USB-RJ11

The SER-USB-RJ11 device provides connectivity between a USB connector and the RJ-11 connector P12 on the NPP-D board.

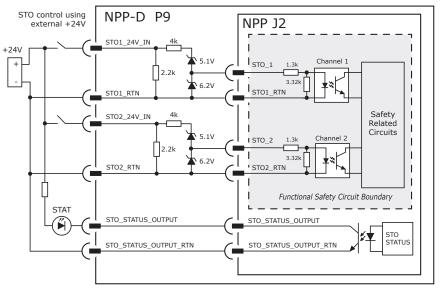
Note: The Serial Interface Cable USB to RJ11 (SER-USB-RJ11) can be used to plug-in to either a customer-designed board with an RJ11 or a Copley NPP drive with the NPP-D. When you order either type of board, the Manufacturer recommends you order the Serial Interface Cable USB to RJ11 (SER-USB-RJ11).

NPP-D SAFE TORQUE OFF (STO)

DESCRIPTION

copley controls

In the following diagram, it shows the use of external 24V to energize the STO inputs. Both STO inputs must be energized in order to enable the drive.


IN1 is the hardware Enable input. It is used with an immediate contact relay to bring the motor to a stop before a delayed contact relay deenergizes the STO inputs and prevents torque production in the motor.

STAT-OUT OPERATION

ST01	0	1	0	1
STO2	0	0	1	1
STAT	0	0	0	1

P9 STO

Signal	Pin		Signal
FGND	1	6	STO_STATUS_OUTPUT
STO1_24V_IN	2	7	STO_STATUS_OUTPUT_RTN
STO1_RTN	3	8	SGND
STO2_24V_IN	4	9	VLOGIC
STO2_RTN	5		
		-	

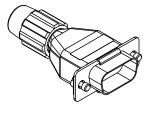
In the STAT OUT Operation table, the following describes the values.

• STO1 & STO2 rows, 1 = 24V are applied between the IN-24V and RTN. 0 = open-circuit.

- In the STAT row, 1 = the optocoupler is ON, 0 = the optocoupler is OFF.
- STAT output is ON (True) when both STO1 & STO2 are energized, allowing the drive to be enabled and to produce torque.

Nano^{PLUS} Module CANopen

STO OPERATION

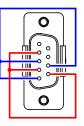

STO Input Voltage	STO State
STO1_24V_IN AND STO2_24V_IN ≥ 16 Vdc	STO Inactive. Drive can be enabled to produce torque.
STO1_24V_IN <i>OR</i> STO2_24V_IN < 5.9 Vdc	STO Active. Drive cannot be enabled to produce torque.
STO1_24V_IN OR STO2_24V_IN Open	STO Active. Drive cannot be enabled to produce torque.

Note: In the above table, the Voltages are referenced between a STOx_24V_IN and a STOx_RTN in P9. For example, $V(STO1) = V(STO1_24V_IN) - V(STO1_RTN)$

NPP-D SAFE TORQUE OFF (STO) BYPASS

The Bypassing function is used when the user does not require the STO function. The STO-CK-04 has jumpers that use the VLOGIC to energize the STO inputs.


STO-CK-04 Connector

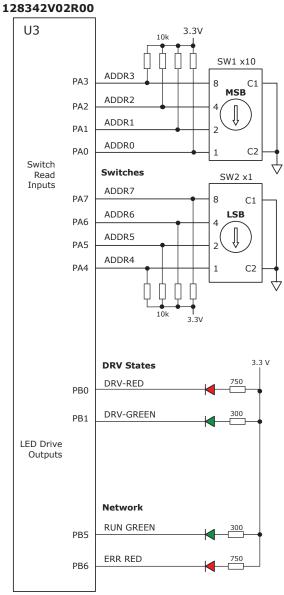


This disables the STO function, allowing the drive to be enabled from hardware inputs or a network. When STO-CK-04 is used, VLOGIC shall use 24 Vdc.

Wiring Diagram

Red (VLOGIC): 2,4,9 Blue (SGND): 3,5,8

lano^{PLUS} Module CANopen


NPP-D SWITCHES & LEDS

copley (

CAN ID (STATION ALIAS) SWITCH CONNECTIONS & LEDS

The following diagram shows the connections to the CAN Device ID switches and status LEDs. The switches are read after the drive is reset or powered-ON.

When changing the settings of the switches, be sure to either reset the drive or power the drive OFF-ON.

Ordering Information: U3

In the above diagram, U3 can be purchased through the Copley approved supplier, Arrow Electronics.

Contact Information: Arrow Electronics 4 Technology Drive Peabody, MA 01960 Phone: (978) 538-8500

Refer to the table below for more details.

Part Number	Supplier	Description
128342V02R00	Arrow Electronics	Pre-programmed uC for Address Switch and LED

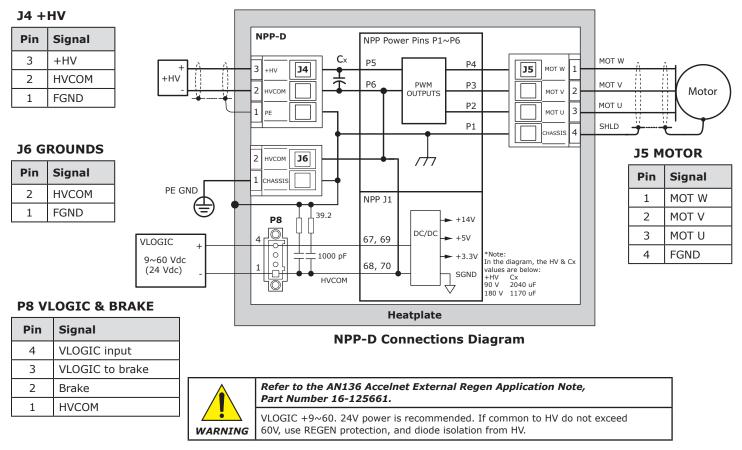
NPP-D +HV, VLOGIC, & MOTOR CONNECTIONS

J4 +HV

The +HV power supply connects to J4 pins 2 & 3. In the following diagram, the shield shown is optional and is primarily used for the reduction of RF emissions originating from the drive. As shown, it connects to the case of the power supply. Note that the minus terminal is not grounded externally. The reason is that currents in the cables produce voltage drops. Grounding the supply at the drive ensures that such voltage drops do not appear in the drive circuits.

J5 MOTOR

Pins 1~3 are used for the motor windings. Pin 4 is used for a cable shield. It connects to the drive heatplate on one end and should connect to the motor frame on the other end. This provides a return path for currents produced by the PWM outputs and the capacitance between the cable conductors, motor windings, and motor frame. While the frame is commonly grounded by mounting it to equipment, without the shield connections the PWM shield, the current could flow into external devices.

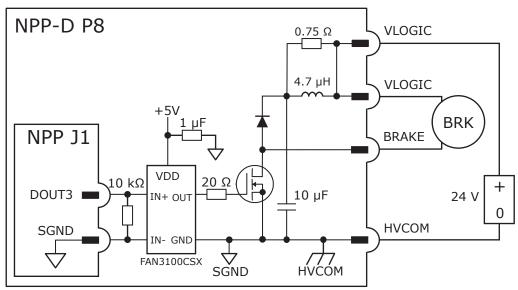

P8 VLOGIC

P8 powers the internal logic and control circuits in the drive. When it is used with the STO feature, it must be produced by power supplies with transformer isolation from the mains and PELV or SELV ratings and a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLOGIC can be driven from a single power supply.

P8 also is the connection point for a motor holding brake. These connect to pins 2 & 3 and is not shown here because it is not part of the power and motor connections. If the STO jumper is used, then 24Vdc shall power the Vlogic P8.

GROUNDING

PE and CHASSIS are Protective Earth grounds which are the zerovolt reference for the voltages used in the drive. In addition, they are used as the connection points for fault currents that might flow from any failures in the drive that could expose a user to an electric shock. All of these items connect to the drive heatplate and they have no connections to any circuits in the drive. HVCOM, High-Voltage-Common is the 0V or 'ground' circuit for the high voltage circuits that drive the motor.


Nano^{PLUS} Module CANopen copley 🏉 controls

NPP-D +HV, VLOGIC, & BRAKE CONNECTIONS

In the following diagram, it shows the NPP-D Vlogic and brake connections.

The brake circuit on the NPP-D is MOSFET driven by OUT3 of the NPP.

NPP-D VLOGIC & Brake Diagram

SPECIFICATIONS

Output	Data	Notes
Voltage Range	Max	+9~60 Vdc
Output Current	Ids	1.0 Adc

HI/LO Definitions: Outputs

Input	State	Condition
BRAKE	LO	Output MOSFET is OFF. Brake is un-powered and locks motor. Motor cannot move. Brake state is Active.
[DOUT3]	HI	Output MOSFET is ON. Brake is powered, releasing motor. Motor is free to move. Brake state is NOT-Active.

P8 BRAKE	
----------	--

Signal	Pins
Input VLOGIC	4
Brake VLOGIC	3
Brake	2
HVCOM	1

CME Default Setting for the Brake Output [DOUT3] is "Brake - Active Low."

Active = Brake is holding motor shaft (for example, the *Brake is Active*). Motor cannot move. No current flows in coil of brake. CME I/O Line States shows [DOUT3] as LO. BRK Output voltage is HI (24V), MOSFET is OFF. Servo drive output current is zero. Servo drive is disabled, PWM outputs are OFF.

Inactive = Brake is not holding motor shaft (for example, the *Brake is NOT-Active*). Motor can move. Current flows in coil of brake. CME I/O Line States shows [OUT3] as HI. BRK output voltage is LO (~0V), MOSFET is ON. Servo drive is enabled, PWM outputs are ON. Servo drive output current is flowing.

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

Vlogic +9~60. 24V power is recommended. If using a 24V Brake, 24V is required. If common to HV do not exceed 60V, use REGEN protection and diode isolation from HV.

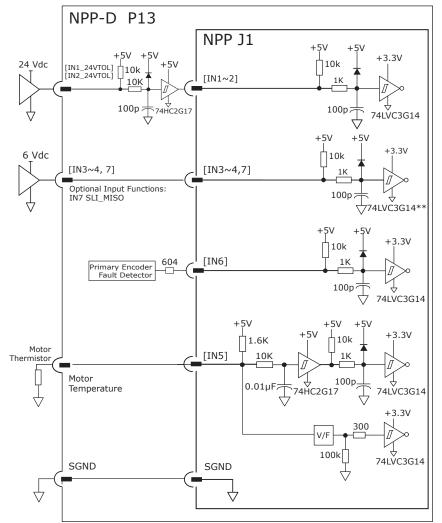
NPP-D INPUTS & OUTPUTS

INPUTS 1~7

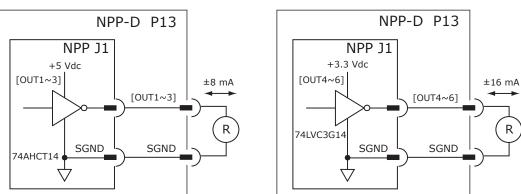
controls

- The inputs are described below:
- IN1~2, 24V can tolerate +24 Vdc.
- IN3~4, IN7 can tolerate +6 Vdc.
- IN5 is used to interface a DIN44081/2 thermistor in a motor winding.

copley **Nano**^{PLUS} Module CANopen


• IN6 is for the motor encoder fault.

P13 INPUTS


Signal	Pins
IN1_24V	3
IN2_24V	4
IN3	5
IN4	6
*IN5	7
IN6	8
**IN7	9

*Notes:

- *1) For information on IN5, refer to page 9:Motor Overtemp Input IN5.
- **2)The gate on IN7 is 74AHCT14BQ powered with 5.0 Vdc.

NPP-D Inputs & Outputs Diagram

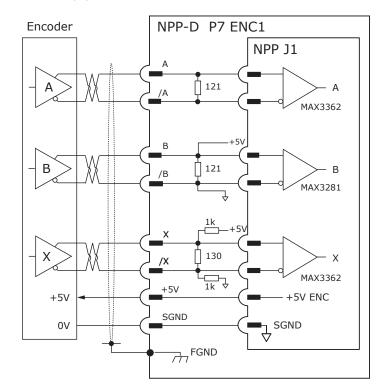
NPP-D P13 Outputs Diagram

OUTPUTS 1~6 P13 OUTPUTS

Signal	Pins
DOUT1	31
DOUT2	32
DOUT3	33
DOUT4	35
DOUT5	36
DOUT6	37

NPP

PCF/

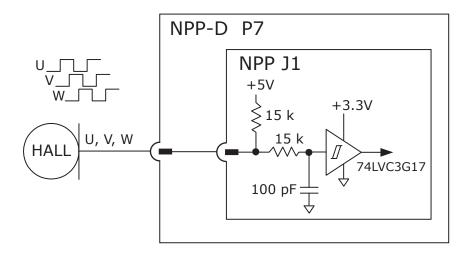


NPP-D PRIMARY FEEDBACK ENCODER

ENC1 is the Motor encoder. It is used in single-encoder applications. In Dual-encoder applications, it can be assigned as Primary or Secondary using the CME software.

FGND connects to the connector shells which connect to the etch areas surrounding the four mounting holes of the NPP-D. The mounting screws and metal standoffs provide a connection to the equipment chassis which has a connection to earth.

Р	P7 INPUTS		
Signal	Pins		
ENCA1	13		
/ENCA1	12		
ENCB1	11		
/ENCB1	10		
ENCX1	9		
/ENCX1	8		
+5VENC	6		
SGND	5,16, 25,26		
FGND	1		


NPP-D HALLS

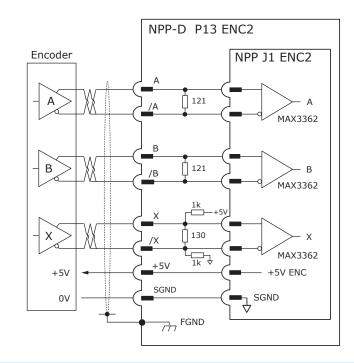
In the following diagram, it shows the NPP-D Halls connections.

P7 HALL INPUTS

Signal	Pins
Hall U	2
Hall V	3
Hall W	4

The table identifies the signals and pins for the P9 Hall inputs.

NPP-D SECONDARY FEEDBACK


ENC2 is the Load encoder. Typically, it provides the feedback from a load driven by the motor. It is used in dual-encoder applications as well.

In dual-encoder applications, it can be assigned as Primary or Secondary using the CME software.

P13 ENC2 INPUTS

copley (

Signal	Pins
ENCA2 [A]	10
/ENCA2 [/A]	40
ENCB2 [B]	11
/ENCB2 [/B]	41
ENCX2 [X]	12
/ENCX2 [/X]	42
IN6 [Fault]	8
+5VENC	28,43
SGND	13,16,17,18,19,20,21, 22,23,24,25, 26,27
FGND	15

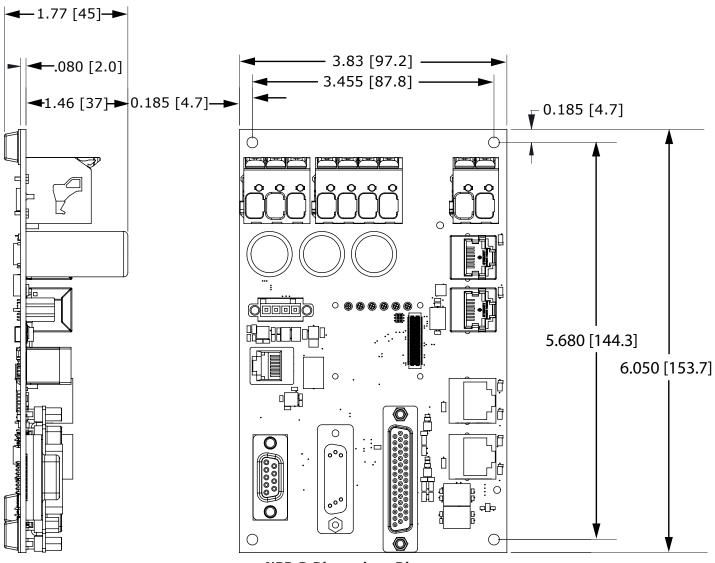
NPP-D ANALOG INPUT

As a reference input, the NPP-D analog intput takes Position/ Velocity/Torque commands from a controller.

SPECIFICATIONS

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.1 kΩ

Signal	P13 Pins
REFIN1+ [Ref(+)]	2
REFIN1- [Ref(-)]	1
SGND	13,16,17,18,19,20,21,
SGND	22,23,24,25,26,27


If it is not used as a command input, it can be used as a generalpurpose analog input.

In the following diagram, it shows the NPP-D dimensions and board layout.

NPP-D Dimensions Diagram

copley **Nano**^{PLUS} Module CANopen

PCF/

The NPP-Z Board diagram shows the connections and board layout. The tables identify the signals and pins for each connector.

J4 +HV/ MOTOR				
Signal	Pin			
PE	1			
HVCOM	2			
+HV	3			
MOTW	4			
MOTV	5			
MOTU	6			
FGND	7			

J19 VLOGIC

Signal	Pin
VLOGIC	2
HVCOM	1

J11 HALLS

Signal	Pin
HALLU	5
HALLV	4
HALLW	3
+5VENC	2
SGND	1

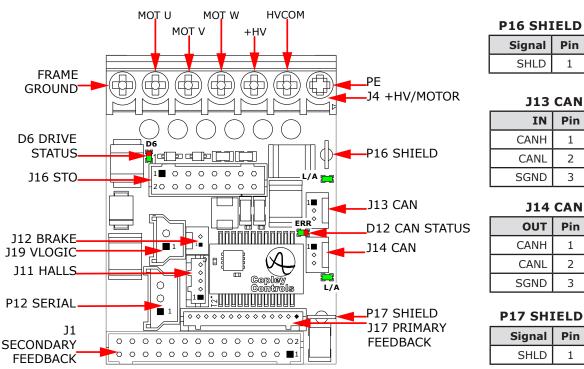
J16 STO

P12 SERIAL Signal

RX232TX1

RS232RX1

SGND


Pin

3

2

1

Signal	P	in	Signal			
STO1_24V_IN	2	1	STO1_RTN			
STO1_IN	4	3	STO1_RTN			
N.C.	6	5	N.C.			
STO2_24V_IN	8	7	STO2_RTN			
STO2_IN	10	9	STO2_RTN			
N.C.	12	11	N.C.			
STO_STATUS_ OUTPUT_RTN	14	13	SGND			
+5V	16	15	STO_STATUS_ OUTPUT			

NPP-Z Connections Diagram

J1 I/O						
Signal	P	in	Signal			
/ENCA2	2	1	FGND			
ENCA2	4	3	SGND			
IN1_24V	6	5	+5VENC			
IN2_24V	8	7	+5VENC			
IN3	10	9	/ENCB2			
IN4	12	11	ENCB2			
IN5 (MOTEMP)	14	13	SGND			
IN6 (ENC_FAULT)	16	15	/ENCX2			
IN7 (SLI_MISO)	18	17	ENCX2			
SGND	20	19	REFIN1-			
DOUT1	22	21	REFIN1+			
DOUT2	24	23	SGND			
DOUT3 (BRAKE OFF)	26	25	DOUT6 (SLI_EN1)			
DOUT4 (SLI_MOSI)	28	27	DOUT5 (SLI_CLK)			

J17 ENCODER 1

Pin

1

Pin

1

2

3

Pin

1

2

3

Pin

1

J13 CAN IN

J14 CAN

CANL

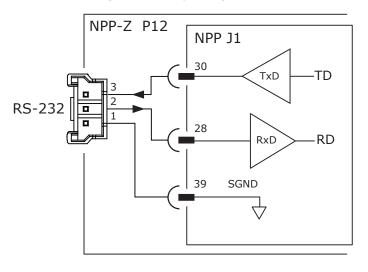
OUT

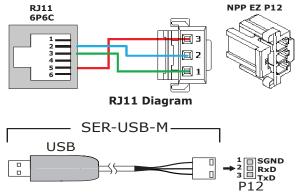
CANL

J 1 /	LINCODER I			
	Signal	Pin		
	+5VENC	1		
	SGND	2		
	/ENCA1	3		
	ENCA1	4		
	/ENCB1	5		
	ENCB1	6		
	/ENCX1	7		
	ENCX1	8		
	IN5	9		
	SGND	10		
	COS1+	11		
	COS1-	12		
	SIN1+	13		
	SIN1-	14		

copley **Nano**^{PLUS} Module CANopen controls

NPP-Z: P12 RS-232


RS-232 CONNECTION

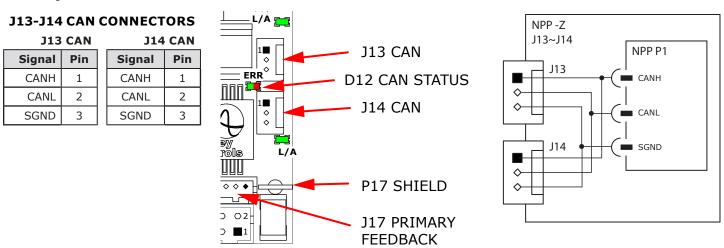

The RS-232 port is used to configure the drive for stand-alone applications, or it can be used for the configuration before it is installed into a CAN network.

Ρ	1	2	R	-2	23	2	

Signal	Pin
RX232TX1	3
RS232RX1	2
SGND	1

The CME software communicates with the drive over this link. It is then used for the complete drive setup. The CAN Device ID is set via RS-232 along with other operating functions.

The RJ-11 socket (6P6C) is compatible with the existing serialdata cables. It can be done using an RJ-11 socket (6P6C) wired with a compatible serial-data cable as shown in the RJ11 Diagram. Molex: 42410-6170 Modular Jack, 6 terminals, size 6


Copley offers a SER-USB-M serial port adapter. This serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 230,400. The SER-USB-M cable has output levels that are compatible with NPP-Z serial port.

CANOPEN CONNECTIONS

CANOPEN CONNECTORS

Dual connectors are provided for CAN bus connectivity. Pins are wired-through so that drives can be daisy-chained and controlled with a single connection to the user's CAN interface.

A 120 Ω CAN terminator should be placed in the last drive in the chain.

Drive

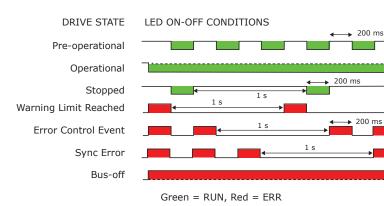
NPP-Z: DRIVE STATUS LED (AMP)

DRIVE STATUS LED (AMP)

copley (

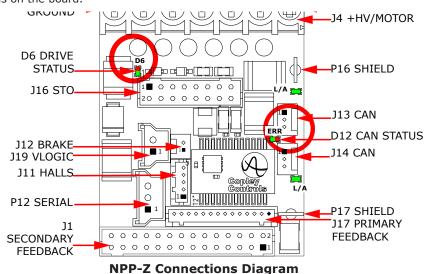
A bi-color LED "AMP" displays the state of the drive. Colors do not alternate and can be solid ON or BLINKING. If multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared, the next condition in the table is shown.

PLUS Module CANopen


LED	Condition Description	
Red/Blinking	Latching fault. Operation can not resume until the drive is Reset.	
Red/Solid	Transient fault condition. Drive can resume the operation when the condition causing the fault is removed.	
GREEN/SLOW-BLINKING	Drive OK but NOT-enabled. Can run when enabled.	
GREEN/FAST-BLINKING	Positive or Negative limit switch active. Drive can only move in the direction not inhibited by the limit switch.	
Green/Solid	Drive OK and enabled. Can run in response to reference inputs or CANopen commands.	

LATCHING FAULTS

Default	Optional (Programmable)
Short circuit (Internal or External)	Over-voltage
Drive over-temperature	Under-voltage
Motor over-temperature	Motor Phasing Error
Feedback Error	Command Input Lost
Following Error	Motor Wiring Disconnected
	Over Current (Latched)


CAN STATUS LED

In the following LED ON-OFF Conditions diagram, the GREEN LED "RUN" shows the state of the CAN state machine.

LED On-Off Conditions Diagram

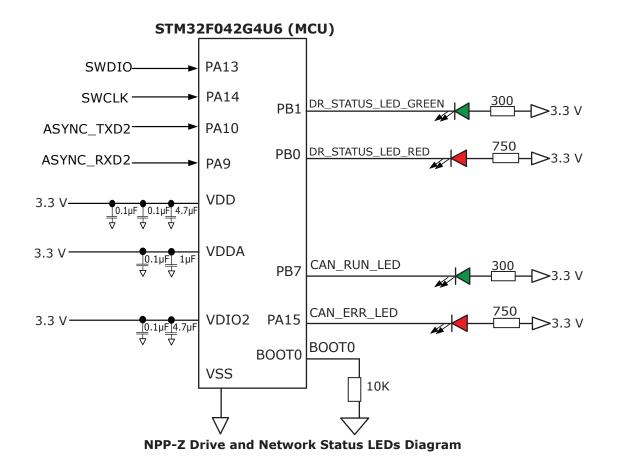
In the following NPP-Z Connections diagram, it shows the connectors and the LED locations on the board. The circles identify the location of the LEDs.

The RED LED "ERR" shows the status of the CAN physical layer and errors due to missing messages.

PLUS Module CANopen

NPP-Z: DRIVE AND NETWORK STATUS LEDS

The "STM" microprocessor chip uses the serial port with ASYNC_TXD2 and ASYNC_RXD2 to drive LEDs.


• DR_STATUS_LED_X signals drive the AMP STATUS LED.

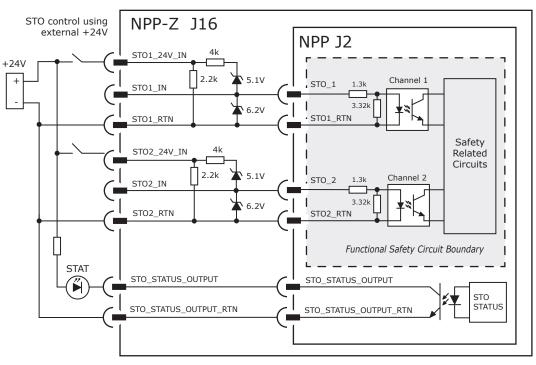
copley

controls

• CAN_XXX_LED show the network status of the drive communication.

In the following diagram, it shows the NPP-Z drive and network status LEDs.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-123147 Rev AB



NPP-Z: J16 SAFE TORQUE OFF [STO]

DESCRIPTION

In the following diagram, it shows the use of an external 24V to energize the STO inputs. Both STO inputs must be energized in order to enable the drive.

IN1 is the hardware Enable input. It is used with an immediate contact relay to bring the motor to a stop before a delayed contact relay deenergizes the STO inputs and prevents torque production in the motor.

NPP-Z J16 STO Diagram

Note: In the diagram, the +24V shown can be driven from the VLOGIC power supply. The STOx_24V_IN circuits can tolerate the +60V limit of the VLOGIC input. The STOx_IN maximum voltage limits are +7.0 Vdc.

STO_STATUS_OUTPUT

STO1	0	1	0	1
STO2	0	0	1	1
STAT	0	0	0	1

In the STAT-OUT Operation table, the following describes the values. • STO1 & STO2 rows, 1 = 24V. It is applied between the IN-24V and RTN. 0 = open-circuit.

• In the STAT row, 1 = the optocoupler is ON,

0 = the optocoupler is OFF.

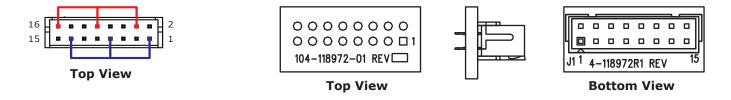
• STAT output is ON (True) when both STO1 & STO2 are energized, allowing the drive to be enabled and to produce torque.

J16 STO

Signal	Pin		Signal
STO1_RTN	1	2	STO1_24V_IN
STO1_RTN	3	4	STO1_IN
N.C.	5	6	N.C.
STO2_RTN	7	8	STO2_24V_IN
STO2_RTN	9	10	STO2_IN
N.C.	11	12	N.C.
SGND	13	14	STO_STATUS_OUTPUT_RTN
STO_STATUS_OUTPUT	15	16	+5V

STO OPERATION

STO Input Voltage	STO State
STO1_24V_IN AND STO2_24V_IN ≥ 16 Vdc	STO Inactive. Drive can be enabled to produce torque.
STO1_IN AND STO2_IN ≥ 3.0 Vdc	
STO1_24V_IN <i>OR</i> STO2_24V_IN < 5.9 Vdc	
STO1_IN <i>OR</i> STO2_IN ≤ 0.8 Vdc	STO Active. Drive cannot be enabled to produce torque.
STO1_IN OR STO2_IN Open	


Note: In the above table, the Voltages are referenced between a STOx_IN and a STOx_RTN in J16 For example, $V(STO1) = V(STO1_24V_IN) - V(STO1_RTN)$

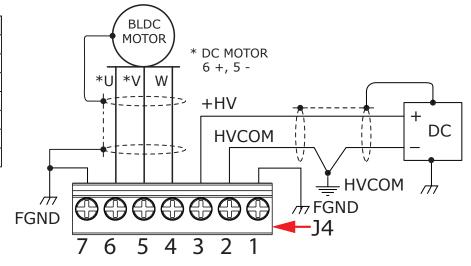
NPP-Z: J16 SAFE TORQUE OFF (STO) BYPASS

The Bypassing function is used when the user does not require the STO function. The NP-Z-STO has jumpers that use the +5VENC to energize the STO inputs.

This disables the STO function, allowing the drive to be enabled from hardware inputs or a network. The following diagrams show the NP-Z-STO top and bottom views.

NPP-Z: J4 +HV & MOTOR CONNECTIONS

J4 +HV: PIN 2, 3


The +HV power supply connects to J4 pins 2 and 3. In the following diagram, it shows the shield. The shield is optional and it is primarily used for the reduction of RF emissions from the drive. As shown, it connects to the case of the power supply. Note that the minus terminal is not grounded externally. This is because currents in the cables produce voltage drops. Grounding the supply at the drive ensures that such voltage drops do not appear in the drive circuits.

J4 MOTOR: PIN 4~6

Pins 4~6 are used for the motor windings. Pin 7 is used for the cable shield. It connects to FGND on one end and it connects to the motor frame on the other end. This provides a return path for currents produced by the PWM outputs and the capacitance between the cable conductors, motor windings, and motor frame. While the frame is commonly grounded by mounting to equipment, without the shield connections, the PWM shield current could flow into external devices.

J4 +HV/MOTOR

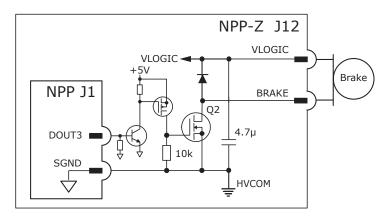
Signal	Pin
PE	1
HVCOM	2
+HV	3
MOTW	4
MOTV	5
MOTU	6
FGND	7

NPP-Z J4 +HV & Motor Connections Diagram

NPP-Z: J12 BRAKE

J12 BRAKE:

copley controls


The EZ board has components that can actuate a brake when it is controlled by DOUT3.

Nano^{PLUS} Module CANopen

HI/LO Definitions: Outputs

Input	State	Condition
BRAKE	LO	Output MOSFET Q2 is OFF. Brake is un-powered and locks motor. Motor cannot move. Brake state is Active.
[DOUT3]	HI	Output MOSFET Q2 is ON. Brake is powered, releasing motor. Motor is free to move. Brake state is NOT-Active.

If it is not used for the brake, DOUT3 is programmable for other functions.

CME Default Setting for Brake Output [DOUT3] is "Brake - Active Low."

=	Brake is holding motor shaft (i.e. the <i>Brake is Active</i>). Motor cannot move.
	No current flows in coil of brake.
	CME I/O Line States shows [DOUT3] as LO.
	BRK Output voltage is HI (24V), MOSFET Q2 is OFF.
	Servo drive output current is zero.
	Servo drive is disabled, PWM outputs are OFF.
	=

Inactive = Brake is not holding motor shaft (i.e. the *Brake is NOT-Active*). Motor can move. Current flows in coil of brake. CME I/O Line States shows [DOUT3] as HI. BRK output voltage is LO (~0V), MOSFET Q2 is ON. Servo drive is enabled, PWM outputs are ON. Servo drive output current is flowing.

NPP-Z: J19 VLOGIC

J19 VLOGIC:

The J19 VLogic powers the internal logic and control circuits in the drive. When the STO feature is used, it must be produced by the power supplies with the transformer isolation from the mains, PELV or SELV ratings, and provide a maximum output voltage of 60 Vdc.

SPECIFICATIONS

Input	Data	Notes
Voltage Range	Max	+9~60 Vdc
Input Dowor	Тур	4 W
Input Power	Max	8 W

Note: The following are the input power values:

- Typical input power is no load on encoder +5V.
- Maximum input power is two encoders @ 250 mA each, and +5V at maximum.

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

J19 VLOGIC

Signal

VLOGIC

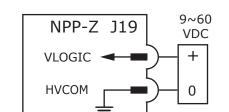
HVCOM

Pin

2

1

Vlogic +9~60. 24V power is recommended. If using a 24V Brake, 24V is required. IF common to HV do not exceed 60V, use REGEN protection and diode isolation from HV.


SPECIFICATIONS

Input	Data	Notes
Voltage Range	Max	+9~60 Vdc
Output Current	Ids	1.0 Adc

J12 BRAKE

Pin	Signal
2	VLOGIC
1	BRAKE

If the motor can operate from voltages of 60 Vdc or less, the +HV and VLOGIC can be driven from a single power supply.

Nano^{PLUS} Module CANopen controls **NPP-Z: J1 INPUTS & OUTPUTS**

J1 has the following inputs and outputs:

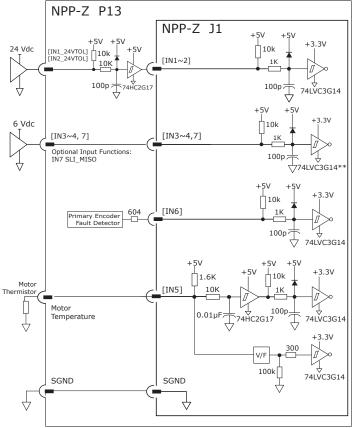
• Digital Inputs 1~7

copley

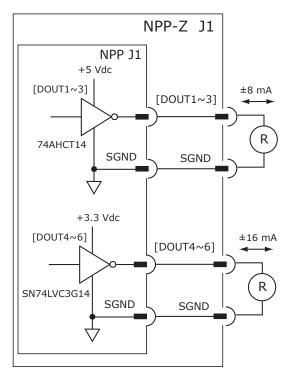
- Digital Outputs 1~6
- Analog Differential Input
- Secondary Quad A/B/X Encoder Input

J1 LOGIC INPUTS

Signal	Pins
IN1_24VTOL	6
IN2_24VTOL	8
IN3	10
IN4	12
*IN5	14
IN6	16
**IN7	18
SGND	3,13,20,23


*Notes:

- *1) For information on IN5, refer to page 9:Motor Overtemp Input IN5.
- **2)The gate on IN7 is 74AHCT14BQ powered with 5.0 Vdc.


- The inputs and outputs are described as follows:
- IN1~2 are 24V compatible.
- IN3,4,5,7 are 6V tolerant.
- IN6 is dedicated to primary encoder fault detection.

PCF/

NPP

NPP-Z J1 Connections Diagram

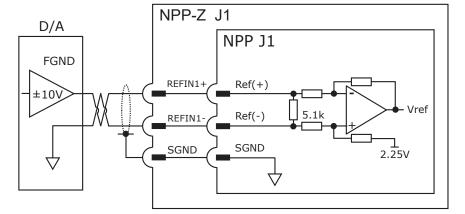
J1 LOGIC OUTPUTS

Signal	Pins
DOUT1 [OUT1]	22
DOUT2 [OUT2]	24
DOUT3 [BRAKE_OFF]	26
DOUT4 [SLI_MOSI]	28
DOUT5 [SLI_CLK]	27
DOUT6 [SLI_ENI]	25
SGND	3,13,20,23

NPP-Z: J1 ANALOG INPUT

As a reference input, the J1 analog input takes Position/Velocity/ Torque commands from a controller.

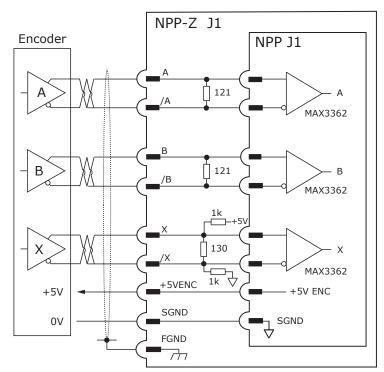
Nano^{PLUS} Module CANopen


If it is not used as a command input, it can be used as the general-purpose analog input.

SPECIFICATIONS

copley (

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.1 kΩ


Signal	J1 Pins
Ref(+)	21
Ref(-)	19

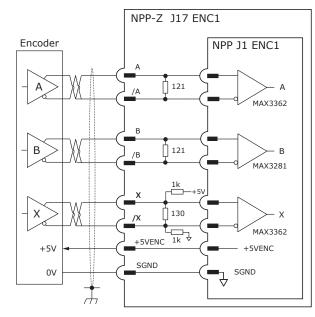
NPP-Z: J1 SECONDARY ENCODER

In the following diagram, it shows the NPP-Z J1 secondary encoder connections. The table identifies the signal and pins for the J1 ENC2 inputs.

Use the secondary encoder when the load is not connected directly to the motor.

J1 ENC2 INPUTS

Signal	Pins
ENCA2 [A]	4
/ENCA2 [/A]	2
ENCB2 [B]	11
/ENCB2 [/B]	9
ENCX2 [X]	17
/ENCX2 [/X]	15
+5VENC	5,7
SGND	3,13,20,23
FGND	1


lano PLUS Module CANopen

NPP-Z: J7 PRIMARY ENCODER

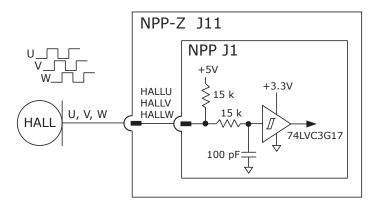
 $\mathsf{ENC1}$ is the Motor encoder. It is used in the single-encoder applications.

In the dual-encoder applications, it can be assigned as Primary or Secondary in the CME software.

J17 ENC1 INPUTS

Signal	Pins
ENCA1 [A]	4
/ENCA1 [/A]	3
ENCB1 [B]	6
/ENCB1 [/B]	5
ENCX1 [X]	8
/ENCX1 [/X]	7
OVERTEMP_IN [IN5]	9
+5VENC	1
SGND	2,10

copley (

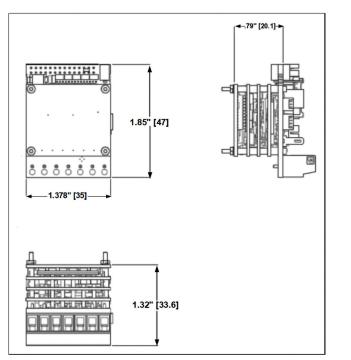

NPP-Z: J11 HALLS

In the NPP-Z, J11 diagram, it shows the Halls connections.

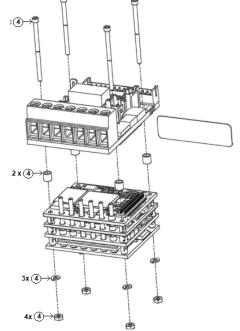
J11 HALL INPUTS

Signal	Pins
Hall U	5
Hall V	4
Hall W	3
+5VENC	2
SGND	1

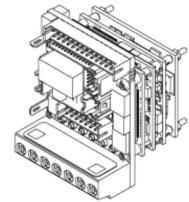
The table identifies the signal and pins for the J11 Hall Inputs.


NPP-Z: MECHANICALS

In the NPP-Z Dimensions diagram, it shows the dimensions for the NPP-Z module components.


In the NPP-Z Mounting Assembly diagram, it shows the location of the parts in the drive when it is shipped.

To mount the board to the panel, use screw lengths of 1'' [25.4 mm]. Connect the nuts to the washers and secure the parts together. As shown in the diagram, secure the nuts to the underside of the board.


Note: To calculate the minimum length of the screws, add the nuts' (depth or width) to this number. For a panel with tapped holes, the 1'' [25.4 mm] screw should be sufficient.

NPP-Z Dimensions Diagram

NPP-Z Mounting Assembly Diagram

NPP-Z Module Diagram

The following table lists the item, quantity, description and manufacturing part numbers shipped with the drive.

00000

കര

Item	Qty	Description	Mfgr, Part Number
1	4	Screw, 1", hex, 0-80, 18-8 THD, 80-1 SS	Fastenal: 0171020
2	4	Spacer, 3 mm, 0.090" I.D, 0.125" O.D.	Bivar: 937-3MM
3	4	Washer, split, 0.062 ID, 18-8, 0.137" O.D. SS	Fastenal: 017926
4	4	Nut, 0-80, 1/8", hex, socket, cap 18-8 SS	Fastenal: 0173909

ORDERING GUIDE

NANO

copley of controls

Part Number	Description
NPP-090-10	Nano ^{Plus} Micro Module CANopen NPP Servo Drive, 5/10 A, 90 Vdc
NPP-090-70	Nano ^{Plus} Micro Module CANopen NPP Servo Drive, 35/70 A, 90 Vdc
NPP-180-10	Nano ^{Plus} Micro Module CANopen NPP Servo Drive, 5/10 A, 180 Vdc
NPP-180-30	Nano ^{Plus} Micro Module CANopen NPP Servo Drive, 15/30 A, 180 Vdc
NPP-090-10-D	Nano ^{Plus} Micro Module with NPP-D Development Board, not soldered, no Heat Sink
NPP-090-70-D	Nano ^{Plus} Micro Module with NPP-D Development Board, soldered , with Heat Sink
NPP-180-10-D	Nano ^{Plus} Micro Module with NPP-D Development Board, not soldered, no Heat Sink
NPP-180-30-D	Nano ^{Plus} Micro Module with NPP-D Development Board, not soldered, with Heat Sink
NPP-090-10-Z	Nano ^{Plus} Micro Module with NPP-Z EZ OEM Board, not soldered, no Heat Sink
NPP-090-70-Z	Nano ^{Plus} Micro Module with NPP-Z EZ OEM Board, soldered , no Heat Sink
NPP-180-10-Z	Nano ^{Plus} Micro Module with NPP-Z EZ OEM Board, not soldered, no Heat Sink
NPP-180-30-Z	Nano ^{Plus} Micro Module with NPP-Z EZ OEM Board, not soldered, no Heat Sink

Nano PLUS Module CANopen

ACCESSORIES FOR NANOPLUS MICRO MODULE NPP-D DEVELOPMENT BOARD

Part Number	Description			
NP-D-CK	P-D Development Board Connector Kit			
STO-CK-04	ANO Bypass Jumper for the NPP-D Development Board			
N-HK	Heat Sink Kit			
SER-USB-RJ11	USB to RJ11 6-pin Modular Adapter			

CONNECTOR KIT FOR NPP-D DEVELOPMENT BOARD

	QTY	REF	Name	Description	MFGR Part Number
	1	P8	VLOGIC and	Connector, Terminal Block, 4-pole, 3.5 mm	WAGO: 734-104/107-000
	1	Põ	Brake	Tool for Terminal Block	WAGO: 734-231
	1	J3	STO	Backshell, 9 Pin, Metal	3M: 3357-9209
NP-D-CK	1	P9	Feedback	Backshell, 15 Pin, Metal	3M: 3357-9215
Connector Kit	1	J1	I/O	Backshell, 25 Pin, Metal	3M: 3357-9225
KIL	1	J3	STO	Connector, 9 Pin Plug, Metal Shell	AMP: 205204-4
	1	P9	Feedback	Connector, D-Sub, 26 Pin HD, Male, Solder Cup	Norcomp: 180-026-103L001
	1 J1 I/O	Connector, D-Sub, 44 Pin HD, Male, Solder Cup	Norcomp: 180-044-103L001		
	9 J3 STO	STO	Contact, Pin, Snap-In, 24~20 AWG	AMP: 66506-9	
	2	J3	STO	Jumper, Wire Harness for STO Bypass Terminator	Copley: 103-131505-01

PCF NPP

copley **Nano**^{PLUS} Module CANopen Ordering Guide

ACCESSORIES FOR NANO PLUS MICRO MODULE NPP-Z OEM BOARD

Part Number	Description			
NP-Z-CK	NPP-Z OEM Board Connector Kit			
N-HK	Heat Sink Kit			
SER-USB-M	USB to 3-pin Molex Adapter Cable			

CONNECTOR KIT FOR NPP-Z OEM BOARD

	Qтy	REF	NAME	DESCRIPTION	MFGR PART NUMBER
	1	J16	STO Bypass	Board Assembly, STO Bypass Board	Copley: NP-Z-STO
	1	J19	VLOGIC	Connector, Socket, single row, 2.00 mm, 2 pos	Molex: 35507-0200
	1	P12	RS-232	Connector, Socket, single row, 2.00 mm, 3 pos	Molex: 35507-0300
	1	J17	Primary Feedback	Connector, Socket, single row, 1.25 mm, 14 pos	Hirose: DF13-14S-1.25C
	1	J16	STO	Connector, Socket, double row, 2.00 mm, 16 pos	HIROSE: DF11-16DS-2C
	1	J12	Brake	Connector, Socket, single row, 1.25 mm, 2 pos	HIROSE: DF13-2S-1.25C
	2	J13, J14	CAN	Conn Wire-MT HSG SKT 1x3P, LKG NYL, beige, 1.25 mm	HIROSE: DF13-3S-1.25C
NP-Z-CK	2	J9, J10	ECAT IN, OUT	Connector, Socket, single row, 1.25 mm, 4 pos	HIROSE: DF13-4S-1.25C
CONNECTOR	1	J11	Halls	Connector, Socket, single row, 1.25 mm, 5 pos	HIROSE: DF13-5S-1.25C
Кіт	1	J1	Secondary Fdbk, I/O	Connector, Socket, double row, 2.00 mm, 28 pos	HIROSE: DF11-28DS-2C
	1	P16, P17	Shields	Connector, positive locking, 26-22 AWG	TE: 353249-2
	5	J8, J19	Molex Crimps	Crimp, Socket 30-24 AWG, 1.4 mm max. Insulation, Tin	Molex: 501212-8000
	1	J19	VLOGIC GND	Black Flying Lead with Socket at one end, 24 AWG, gold, 12"	Molex: 050212-8000-12-B4
	1	J19	VLOGIC	Red Flying Lead with Socket at one end, 24 AWG, gold, 12"	Molex: 050212-8000-12-R4
	29		DF13 Pins	Connector, Contact, Crimp, 30-26 AWG, 1 mm	HIROSE: DF13-2630SCFA
	4	P6	DF13 Wires	Black Flying Lead with Sockets at both ends, 26 AWG, gold, 12"	HIROSE: H4BBG-10112-B6
	17		For DF13	White Flying Lead with Sockets at both ends, 26 AWG, gold, 12"	HIROSE: H4BBG-10112-W6
	1		Brake Wire	Blue Flying Lead with Sockets at both ends, 26 AWG, gold, 12"	HIROSE: H4BBG-10112-L6
	3		DF13 Wires	Red Flying Lead with Sockets at both ends, 26 AWG, gold, 12"	HIROSE: H4BBG-10112-R6
	3		DF11 Wires	Black Flying Lead with Sockets at both ends, 26 AWG, gold, 12"	HIROSE: H3BBG-10112-B6
	3		DF11 Wires	Red Flying Lead with Sockets at both ends, 26 AWG, gold, 12"	HIROSE: H3BBG-10112-R6
	20		DF11 Wires	White Flying Lead with Sockets at both ends, 26 AWG, gold, 12"	HIROSE: H3BBG-10112-W6
	44	J1, J16	DF11 Pins	Connector, Contact, Crimp 28-24 AWG, 1.45 mm	HIROSE: DF11-2428SCA

REVISION HISTORY

16-123147 Document Revision History

Revision	Date	Remarks
AA	November 30, 2021	Evaluation version, pre-release
AB	May 30, 2024	Update digital output & input values and related information. Add Action Electronics part numbers, and replace P1 with J1 (where applicable). Update new NPP assembly drawing.

Trademarks: CANopen[®] is a registered trademark of CAN in Automation, Panasonic[™] is a trademark of Panasonic Corp., SAE J1939[™] is trademark of SAE Int., Samtec is a trademark of Samtec Inc., Sanyo Denki[™] is a trademark of Sanyo Denki Co., Ltd., Tamagawa[™] is a trademark of Tamagawa Seiki Co., Ltd.